物理化学学报 >> 2015, Vol. 31 >> Issue (2): 268-276.doi: 10.3866/PKU.WHXB201411261

电化学和新能源 上一篇    下一篇

均匀负载氧化镍纳米颗粒多孔硬碳球的制备及其高性能锂离子电池负极材料应用

张远航1, 王志远1, 师春生1, 刘恩佐1, 何春年1, 赵乃勤1,2   

  1. 1. 天津大学材料科学与工程学院, 天津市材料复合与功能化重点实验室, 天津 300072;
    2. 天津化学化工协同创新中心, 天津 300072
  • 收稿日期:2014-09-03 修回日期:2014-11-26 发布日期:2015-01-26
  • 通讯作者: 师春生 E-mail:csshi@tju.edu.cn
  • 基金资助:

    科技部对欧盟科技合作专项经费项目(1206)及天津市科技支撑计划重点项目(12ZCZDGX00800)资助

Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials

ZHANG Yuan-Hang1, WANG Zhi-Yuan1, SHI Chun-Sheng1, LIU En-Zuo1, HE Chun-Nian1, ZHAO Nai-Qin1,2   

  1. 1. Tianjin Key Laboratory of Composites and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China;
    2. Synergetic Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
  • Received:2014-09-03 Revised:2014-11-26 Published:2015-01-26
  • Contact: SHI Chun-Sheng E-mail:csshi@tju.edu.cn
  • Supported by:

    The project was supported by the China-EU Science and Technology Cooperation Project (1206) and Key Technologies R & D Program of Tianjin, China (12ZCZDGX00800).

摘要:

利用水热法制备了粒径为90-130 nm的多孔硬碳球, 并通过浸渍与煅烧的方法制备了硬碳球均匀负载纳米氧化镍颗粒(~10 nm)复合材料. 硬碳球的表面官能团和内部的微孔保证了氧化镍颗粒在硬碳上的均匀分布. 在100 mA·g-1的电流密度下, 复合材料电极首次充电比容量高达764 mAh·g-1; 在100 mA·g-1的电流密度下循环100 个周期后电极充电比容量保持在777 mAh·g-1, 容量保持率为101%; 800 mA·g-1电流密度下电极的充电比容量达380 mAh·g-1, 显示复合材料电极具有优异的循环性能和倍率性能. 硬碳的表面官能团和内部微孔为氧化镍提供了优先形核位点, 保证了二者的牢固结合, 使复合材料获得了“协同效应”, 从而使复合电极具备更短的锂离子扩散路径、更高的电导率和更多的锂离子脱嵌位点. 这种方法还可用于制备硬碳/其他金属氧化物复合材料.

关键词: 微孔, 水热法, 浸渍, 表面官能团, 循环性能, 倍率性能

Abstract:

Uniform nickel oxide nanoparticles (~10 nm) embedded in porous hard carbon (HC) spheres (90- 130 nm) for high performance lithium ion battery anode materials were synthesized via a hydrothermal method followed by impregnation and calcination. The HC spheres, which had abundant micropores and plentiful surface functional groups, allowed firm embedding and uniform dispersion of the NiO nanoparticles. The as-prepared HC/NiO composite anode exhibited excellent electrochemical performance, including high reversible capacity (764 mAh·g-1), good cycling stability (a high specific capacity of 777 mAh·g-1 after the 100th cycle at a current density of 100 mA·g-1, a capacity retention rate of 101%), and high rate capability (380 mAh·g-1 even at 800 mA·g-1). These excellent electrochemical properties were attributed to the unique structure of NiO nanoparticles tightly embedded in a hard carbon matrix. Anode materials with such a structure have the advantages of improved electronic conductivity, more accessible active sites for lithium ion insertion, and short diffusion paths for lithium ions and electrons. The observed“synergistic effects”between the hard carbon and NiO represent an advance in the electrochemical performance of such composites. The present method is an attractive route for preparing other hard carbon/metal oxide composite anodes for lithium ion batteries.

Key words: Micropore, Hydrothermal method, Impregnation, Surface functional group, Cycling performance, Rate capability