物理化学学报 >> 2015, Vol. 31 >> Issue (8): 1602-1608.doi: 10.3866/PKU.WHXB201506181

材料物理化学 上一篇    下一篇

富氮多级孔炭材料的制备及其吸附分离CO2的性能

金振宇,李曈,陆安慧*()   

  • 收稿日期:2015-05-08 发布日期:2015-08-12
  • 通讯作者: 陆安慧 E-mail:anhuilu@dlut.edu.cn
  • 基金资助:
    国家自然科学基金(21473021);高等学校博士点专项基金(20120041110019)

Nitrogen-Enriched Hierarchical Porous Carbon for Carbon Dioxide Adsorption and Separation

Zhen-Yu. JIN,Tong. LI,An-Hui. LU*()   

  • Received:2015-05-08 Published:2015-08-12
  • Contact: An-Hui. LU E-mail:anhuilu@dlut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21473021);Specialized Research Fund for the DoctoralProgram of Higher Education, China(20120041110019)

摘要:

使用新型含氮聚合物席夫碱为炭源, SBA-15为模板,通过纳米铸型法原位合成微孔-中孔-大孔串联的多级孔富氮炭材料.材料的比表面积为752 m2·g-1,孔容0.79 cm3·g-1; X光电子能谱分析表明炭材料中的氮含量高达7.85%(w).将所制备的多孔炭材料应用于CO2的吸附分离,发现炭材料的微孔发挥主导作用,表面氮掺杂发挥辅助作用.在两者的协同作用下, CO2吸附量在常压、273 K下可达97 cm3·g-1, CO2/N2和CO2/CH4的分离比(摩尔比)分别为7.0和3.2,低压亨利吸附选择性分别为23.3和4.2.采用Toth模型对单组分平衡吸附进行拟合,并根据理想溶液吸附理论(IAST)预测双组分CO2/N2和CO2/CH4混合气体的分离选择性分别为40和18.

关键词: 席夫碱, 多级孔炭, 富氮, CO2捕集

Abstract:

Hierarchical nitrogen-enriched porous carbon containing micropores, mesopores, and macropores were prepared by a nanocasting pathway using a Schiff base precursor and SBA-15 as the hard template. The specific surface area and pore volume of the obtained porous carbon are 752 m2·g-1 and 0.79 cm3·g-1, respectively. The nitrogen content is as high as 7.85% (w). The porous carbon shows a CO2 capacity of 97 cm3·g-1 at ambient pressure and 273 K. The CO2/N2 and CO2/CH4 separation ratios (molar ratios) are accordingly 7.0 and 3.2, and the Henry's low pressure selectivities are 23.3 and 4.2, respectively. CO2 adsorption tests confirmed that the micropores play a dominant role and nitrogen-containing functional groups play a synergistic role. The predicted ideal adsorbed solution theory (IAST) selectivities of the two-component mixed stream are 40 (CO2/N2) and 18 (CO2/CH4) by Toth mode simulation.

Key words: Schiff-base, Hierarchical porous carbon, Nitrogen-rich, Carbon dioxide capture