物理化学学报 >> 2016, Vol. 32 >> Issue (1): 365-372.doi: 10.3866/PKU.WHXB201511102

论文 上一篇    下一篇

部分水解聚丙烯酰胺与蠕虫状胶束在微米级毛细管中的驱替粘度

陆业昌1,李文宏2,3,张永强2,3,李学丰1,董金凤1,*()   

  1. 1 武汉大学化学与分子科学学院,武汉 430072
    2 低渗透油气田勘探开发国家工程实验室,西安 710021
    3 中国石油长庆油田分公司勘探开发研究院,西安 710021
  • 收稿日期:2015-09-30 发布日期:2016-01-13
  • 通讯作者: 董金凤 E-mail:jfdong@whu.edu.cn
  • 基金资助:
    国家自然科学基金(21573164, 21273165);中国石油长庆油田分公司资助项目

In-situ Viscosity of Hydrolyzed Polyacrylamides and Surfactant Worm-Like Micelle Solutions in Microscale Capillaries

Ye-Chang LU1,Wen-Hong LI2,3,Yong-Qiang ZHANG2,3,Xue-Feng LI1,Jin-Feng DONG1,*()   

  1. 1 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
    2 National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi'an 710021, P. R. China
    3 Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710021, P. R. China
  • Received:2015-09-30 Published:2016-01-13
  • Contact: Jin-Feng DONG E-mail:jfdong@whu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21573164, 21273165);PetroChina Changqing Oilfield Co

摘要:

部分水解聚丙烯酰胺(HPAMs)被大量地用作三次采油中驱替液的增稠剂,表面活性剂在一定的条件下可以通过自组装形成蠕虫状胶束,具有与高分子相似的增稠的作用。本文在半径为1–10 μm的毛细管中,分别考察了HPAMs与蠕虫状胶束的微观驱替行为,研究结果表示毛细管内腔的尺寸限制了这些非牛顿流体的增稠作用。随着毛细管半径的减小,聚合物溶液的剪切变稀越剧烈,甚至从非牛顿流体转变为牛顿流体的流体行为。结合驱替研究和超滤、电镜的结果,证明了高分子的缠绕结构在毛细管中已被破坏。通过对比驱替数据,蠕虫状胶束在毛细管中能够更大程度地保留宏观的粘度,我们提出表面活性剂能够通过自组装修复被破坏的缠绕结构,比高分子聚合物在微观有限空间中有更好的增稠能力。

关键词: 微米级毛细管, 驱替粘度, 部分水解聚丙烯酰胺, 蠕虫状胶束, 毛细管压力

Abstract:

Hydrolyzed polyacrylamides (HPAMs) are shear-thinning polymers and have wide application in enhanced oil recovery (EOR), whereas worm-like micelles (WLMs) are known as "living polymers", which can be constructed by the self-assembly of surfactant molecules. Here, a series of experiments were conducted on the fluid behavior of HPAMs and worm-like micelles in microscale capillaries with radii from 1 to 10 μm. The results show that the size of capillary has a decisive effect on the in-situ viscosity of the polymer aqueous phase. It was observed that the shear thinning effect of HPAMs is more pronounced in smaller size of capillaries, where the non-Newtonian polymer flow turns into the Newtonian flow. Evidences from filtration with a microporous filter and transmission electron microscopy (TEM) reveal that the polymer network was broken down when entering into the capillary. Conversely, WLMs can maintain their bulk viscosity to a wide extent. We assume that surfactant molecules may reassemble their aggregates and recover their network in-situ. The results suggest that WLMs have a much lower viscosity, but display similar thickening power compared with large polymers in the low or ultra-low permeability reservoirs.

Key words: Micro-scale capillary flows, In-situ viscosity, HPAMs, Worm-like micelles, Capillary pressure