物理化学学报 >> 2016, Vol. 32 >> Issue (3): 656-664.doi: 10.3866/PKU.WHXB201512292

论文 上一篇    下一篇

氧缺陷TiO2-B作为可充电锂离子电池负极材料的第一性原理研究

孔令明1,祝宝林1,庞先勇1,*,王贵昌2,3,*   

  1. 1 太原理工大学化学化工学院, 太原 030024
    2 南开大学化学系, 先进能源材料教育部重点实验室, 天津 300071
    3 中国科学院煤炭化学研究所, 煤转化国家重点实验室, 太原 030001
  • 收稿日期:2015-09-24 发布日期:2016-03-04
  • 通讯作者: 庞先勇,王贵昌
  • 基金资助:
    天津市重点自然科学基金(13JCZDJC26800);煤转化国家重点实验室开放基金(J15-16-908);山西省自然科学基金(2013011012-8)

First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries

Ling-Ming KONG1,Bao-Lin ZHU1,Xian-Yong PANG1,*,Gui-Chang WANG2,3,*   

  1. 1 College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
    2 Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
    3 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
  • Received:2015-09-24 Published:2016-03-04
  • Contact: Xian-Yong PANG,Gui-Chang WANG
  • Supported by:
    the State Key Program of Natural Science Foundation of Tianjin, China(13JCZDJC26800);Foundation of State Key Laboratory of Coal Conversion, China(J15-16-908);Natural Science Foundation of Shanxi Province, China(2013011012-8)

摘要:

利用对氧缺陷的TiO2-B材料进行密度泛函理论的计算,阐述了氧空穴对于TiO2-B材料的电化学性质的影响。计算研究主要聚焦于缺陷材料的锂离子迁移和电子导电性等基本问题。计算结果表明在低锂离子浓度下(x(Li/Ti)≤ 0.25),相比于无缺陷的TiO2-B,氧缺陷TiO2-B有着更高的插入电压和更低的b轴方向迁移活化能,意味着锂离子的嵌入也更容易,这对于可充电电池的充电过程是有利的。而在高浓度下(x(Li/Ti) = 1),锂饱和的氧缺陷TiO2-B相较于无缺陷的TiO2-B有着较低的插入电压,更有利于锂离子的脱嵌过程,这对于可充电电池的放电过程也是有利的。电子结构计算表明缺陷材料的禁带宽度在1.0-2.0 eV之间,低于无缺陷的材料的3.0 eV。主要态密度贡献者是Ti-Ov-3d,并且随着氧空穴的增加它的强度也变得更强。这就表明氧缺陷TiO2-B有更好的电子导电性。

关键词: TiO2-B, 氧空穴, 插入电压, 迁移活化能, 禁带宽

Abstract:

Density functional theory calculations were carried out on oxygen-deficient TiO2-B to evaluate the effect of oxygen vacancies on its electrochemical properties. The computational studies focused on the lithium (Li)-ion transport and electronic conductivity of this defect-containing material. Calculations on TiO2-B with low Li-ion concentration (x(Li/Ti)≤ 0.25) suggest that compared with defect-free TiO2-B, oxygen-deficient TiO2-B has a higher intercalation voltage and lower migration activation energy along the b-axis channel. This facilitates Li-ion intercalation, which is beneficial for the charge process of rechargeable batteries. Meanwhile, for TiO2-B with high Li-ion concentration (x(Li/Ti) = 1), saturated oxygen-deficient TiO2-B with lower insertion voltage favors Li-ion deintercalation, which aids the discharge process. Electronic structure calculations suggest that the band gap of this defect-containing material is within 1.0-2.0 eV, which is narrower than that of defect-free TiO2-B (3.0 eV). The main contributor to the band-gap narrowing is the density of the Ti-Ov-3d state, which becomes much higher as the oxygen vacancy content increases, which increases electronic conductivity.

Key words: TiO2-B, Oxygen vacancy, Intercalated voltage, Migration activation energy, Band gap