物理化学学报 >> 2019, Vol. 35 >> Issue (12): 1319-1340.doi: 10.3866/PKU.WHXB201903010

综述 上一篇    下一篇

二维半导体材料纳米电子器件和光电器件

王根旺1,2,侯超剑1,2,*(),龙昊天1,2,杨立军1,2,*(),王扬1,2,*()   

  1. 1 哈尔滨工业大学,微系统与微结构制造教育部重点实验室,哈尔滨 150001
    2 哈尔滨工业大学机电工程学院,哈尔滨 150001
  • 收稿日期:2019-03-05 录用日期:2019-04-12 发布日期:2019-04-17
  • 通讯作者: 侯超剑,杨立军,王扬 E-mail:houchaojian@163.com;yljtj@hit.edu.cn;wyyh@hit.edu.cn
  • 作者简介:侯超剑,男,1989年生。2019年博士毕业于哈尔滨工业大学。2016年至2018年,在美国密西根州立大学电子与计算机工程系进行博士联合培养。主要研究方向:二维材料光电器件制造及表征|杨立军,男,1972年生。2007年博士毕业于哈尔滨工业大学。现任哈尔滨工业大学机电工程学院教授。主要研究方向:激光微纳制造、激光复合制造、微纳连接及操作、二维材料光电器件制造|王扬,男,1960年生。1999年博士毕业于哈尔滨工业大学。现任哈尔滨工业大学机电工程学院教授。主要研究方向:激光微纳制造、激光复合制造、无损检测、3D打印、二维材料光电器件制造
  • 基金资助:
    国家重点研发计划;(2017YFB1104900);国家自然科学基金(61773275)

Electronic and Optoelectronic Nanodevices Based on Two-Dimensional Semiconductor Materials

Genwang WANG1,2,Chaojian HOU1,2,*(),Haotian LONG1,2,Lijun YANG1,2,*(),Yang WANG1,2,*()   

  1. 1 Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, P. R. China
    2 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
  • Received:2019-03-05 Accepted:2019-04-12 Published:2019-04-17
  • Contact: Chaojian HOU,Lijun YANG,Yang WANG E-mail:houchaojian@163.com;yljtj@hit.edu.cn;wyyh@hit.edu.cn
  • Supported by:
    the National Key R & D Program of China(2017YFB1104900);the National Natural Science Foundation of China(61773275)

摘要:

近年来,随着各领域对微电子器件集成度及性能要求的不断提高,发展基于二维半导体材料的新型高性能功能性器件成为了突破当前技术瓶颈的重要环节和关键方向。目前,作为新型二维半导体材料的代表,二维过渡金属二硫化物、二维黑磷以及范德瓦尔斯异质结凭借其在电学、热学、机械、光学等方面的优异性能已经成为了发展高性能纳米电子器件和光电器件的最具潜力的材料之一。在本综述中,首先概述了几种用于纳米器件的常见二维材料,分析了材料的结构、性能及其在纳米器件中的应用,其次重点对基于过渡金属二硫化物、黑磷以及由其衍生的范德瓦尔斯异质结的纳米电子器件和光电器件的最新研究进展进行讨论,最后对目前二维半导体纳米器件所面临的挑战以及未来的发展方向进行总结及分析,从而为未来发展高性能功能性纳米器件提供支持。

关键词: 二维半导体纳米材料, 过渡金属二硫化物, 黑磷, 范德瓦尔斯异质结, 纳米电子器件, 纳米光电器件

Abstract:

With the continuous miniaturization and integration of electronic and optoelectronic nanodevices, Moore's Law faces huge challenges from the demands of devices with multifunctional and high-performance characteristics. With several recent reports of the successful synthesis of nanomaterials such as nanoparticles, quantum dots, nanowires, and two-dimensional layered materials, the utilization of such materials for the fabrication of electronic and optoelectronic nanodevices has demonstrated potential for realizing multifunctional and high-performance nanodevices in the future. In particular, owing to their excellent electrical, thermal, mechanical, and optical properties, atomically two-dimensional layered materials have emerged as the most promising materials for nanodevices to solve the bottleneck problems of traditional silicon-based devices. Two-dimensional semiconductor materials have been widely applied in many aspects of functional modules, including pn junctions, field effect transistors, rectifiers, photodetectors, and even solar cells. To provide a strong foundation for the development of high-performance and multifunctional nanodevices in the future, this review summarizes the recent advances in electronic and optoelectronic nanodevices based on novel two-dimensional semiconductor materials. We begin the review with a brief introduction of existing two-dimensional materials, including graphene, transition-metal dichalcogenide materials, black phosphorus, hexagonal boron nitride, and van der Waals heterostructures. The atom structure features, electronic and optical properties, and major applications in devices are discussed. The semiconductor materials are suitable for device channels, while graphene and hexagonal boron nitride can be used as electrodes, encapsulating materials, and components of van der Waals heterostructures for channel of field effect transistors. Next, we mainly discuss the advances in electronic and optoelectronic nanodevices based on transition-metal dichalcogenide materials, black phosphorus, and van der Waals heterostructures. In the context of electronic nanodevices, we introduce field effect transistors and other important functional devices, such as sensors, memristors, and integrated circuits. The mobility, on-off ratio, rectification ratio, and other properties of electronic devices are mentioned. In addition, we describe the potential applications of optoelectronic nanodevices for photodetectors, lasers, light-emitting diodes, photovoltaic devices, and so on. The metrics of devices performance such as responsivity, response time, and spectrum response range are compared. Finally, we summarize and compare the advantages and disadvantages of nanodevices based on different materials. Manufacturing comprehensive and high-performance nanodevices will be a promising direction in the future. In addition, the methods for improving the performance of devices are classified. This review will serve as an important reference for the development of future multifunctional and high-performance nanodevices.

Key words: Two-dimensional semiconductor materials, Transition-metal dichalcogenide, Black phosphorus, Van der Waals Heterostructure, Nano-electronic device, Nano-optoelectronic device