物理化学学报 >> 2021, Vol. 37 >> Issue (10): 1911009.doi: 10.3866/PKU.WHXB201911009
孙建川1, 王旭辉1, 陈帅奇1, 廖艳清1, 郜阿旺1, 胡雨昊1, 杨涛1, 徐向宇1, 王颖霞2, 宋家庆1,*()
收稿日期:
2019-11-05
录用日期:
2019-12-14
发布日期:
2019-12-20
通讯作者:
宋家庆
E-mail:songjq@126.com
基金资助:
Jianchuan Sun1, Xuhui Wang1, Shuaiqi Chen1, Yanqing Liao1, Awang Gao1, Yuhao Hu1, Tao Yang1, Xiangyu Xu1, Yingxia Wang2, Jiaqing Song1,*()
Received:
2019-11-05
Accepted:
2019-12-14
Published:
2019-12-20
Contact:
Jiaqing Song
E-mail:songjq@126.com
About author:
Jiaqing Song, Email:songjq@126.com; Tel: +86-10-64423325Supported by:
摘要:
合成高效低成本的氟离子吸附剂仍是具有挑战的研究课题。本文采用无有机物的方法制备了单层结构的薄水铝石,并以此薄水铝石得到大比表面积的活性氧化铝。活性氧化铝的大比表面积保证了很高的吸附效率,合成过程无有机表面活性剂或模板剂的使用,控制了成本。采用X射线衍射(XRD)及扫面电镜(SEM)等方法对样品进行了表征,发现制备的氧化铝前体为单层结构的薄水铝石,其比表面积为789.4 m2·g-1,焙烧后得到活性氧化铝的比表面积为678.4 m2·g-1,孔体积为3.20 cm3·g-1。并系统研究了吸附剂用量、吸附时间等因素对活性氧化铝吸附水中氟离子的影响。研究结果表明,本文制备活性氧化铝对水中氟离子的吸附量可达67.6 mg·g-1。仅分别需0.6、1.0或2.6 g·L-1活性氧化铝就可将10、20或50 mg·L-1的氟离子溶液处理至中国饮用水标准(1.0 mg·L-1)以下。并且此活性氧化铝在pH = 4–9的范围内均可用于水中氟离子的处理,对吸附有较大影响的共存离子为SO42-及PO43-,进一步研究表明,活性氧化铝对氟离子的吸附遵循准二级模型和朗格缪尔等温模型。
孙建川, 王旭辉, 陈帅奇, 廖艳清, 郜阿旺, 胡雨昊, 杨涛, 徐向宇, 王颖霞, 宋家庆. 由单层薄水铝石制备的活性氧化铝处理水中氟离子[J]. 物理化学学报, 2021, 37(10), 1911009. doi: 10.3866/PKU.WHXB201911009
Jianchuan Sun, Xuhui Wang, Shuaiqi Chen, Yanqing Liao, Awang Gao, Yuhao Hu, Tao Yang, Xiangyu Xu, Yingxia Wang, Jiaqing Song. Defluoridation of Water Using Active Alumina Derived from Single-Layer Boehmite[J]. Acta Phys. -Chim. Sin. 2021, 37(10), 1911009. doi: 10.3866/PKU.WHXB201911009
Fig 6
Effects of the dosages of different adsorbents on the ?uoride removal efficiency in fluoride solutions of different initial concentrations. (a) Initial fluoride concentration: 10 mg?L-1, Adsorbent: SB-500; (b) Initial fluoride concentration: 10 mg?L-1, Adsorbents: S1-500 and S2-500; (c) Initial fluoride concentration: 20 mg?L-1, Adsorbents: S1-500 and S2-500; (d) Initial fluoride concentration: 50 mg?L-1, Adsorbents: S1-500 and S2-500."
Table 3
Comparison of the minimum dosages of different adsorbents needed to lower ?uoride concentration below the MCL for fluoride in China (1.0 mg?L-1)."
Adsorbent | concentration/(mg?L-1) | Dose/(g?L?1) | Reference |
Mg-Al-Zr triple-metal composite | 1.4 | 1.5 | 34 |
2.0 | 2.6 | ||
AlOOH | 13 | > 16 | 35 |
Zr-Al-Ca Nanohybride | 50 | 5 | 36 |
alkoxide origin alumina | 5.4 | 6 | 15 |
Manganese dioxide-coated activated alumina | 10 | 4 | 16 |
Alum-impregnated activated alumina | 25 | > 8 | 17 |
Acidic alumina | 5 | 1.5 | 18 |
10 | 3 | ||
15 | 4.5 | ||
Active alumina | 10 | 0.6 | This study |
20 | 1.0 | ||
50 | 2.6 | ||
Commercial alumina | 10 | 35 |
Table 4
Pseudo ?rst-order and Pseudo second-order model parameters of the fluoride adsorptions on S1-500, S2-500 and SB-500."
adsorbent | qe exp/(mg?g-1) | Pseudo ?rst-order | Pseudo second-order | |||||
qe, cal/(mg?g-1) | k1/min-1 | R2 | qe, cal/(mg?g-1) | k2/(g?mg-1?min-1) | R2 | |||
S1-500 | 63.1 | 48.7 | 0.0352 | 0.9615 | 66.2 | 0.002727 | 0.9988 | |
S2-500 | 34.3 | 30.8 | 0.0474 | 0.9782 | 35.4 | 0.006838 | 0.9987 | |
SB-500 | 8.7 | 8.4 | 0.0107 | 0.9191 | 8.8 | 0.051029 | 0.9999 |
Table 6
Comparison of the minimum dosages of different adsorbents needed to lower ?uoride concentration below the MCL for fluoride in China (1.0 mg?L-1)."
Adsorbent | Initial concentration/(mg?L?1) | Surface area/(m2?g?1) | qm/(mg?g?1) | Reference |
AlOOH | 3–35 | – | 3.26 | 35 |
AlOOH | 5–50 | – | 2.06 | 41 |
γ-Al2O3 | 20–250 | 650 | 14.26 | 26 |
alkoxide origin alumina | 5.4–24 | 100 | 2.35 | 15 |
nano-alumina | 1–100 | 151.7 | 14.0 | 42 |
La/alumina | 1–200 | 236.9 | 26.45 | 36 |
acidic alumina | 2–15 | 144.3 | 8.4 | 18 |
alumina S1-500 | 10–200 | 678.4 | 67.6 | This study |
alumina S2-500 | 10–200 | 450.9 | 40.7 |
1 | W HO Guidelines for Drinking-Water Quality 4th ed Geneva, Switzerland: WHO Press, 2011. |
2 |
Jagtap S. ; Yenkie M. K. N. ; Labhsetwar; ; Rayalu S. Chem. Rev. 2012, 112 (4), 2454.
doi: 10.1021/cr2002855 |
3 | GB 5749-2006. National Standard of the People's Republic of China-Standards for Drinking Water Qualit, 2006. |
4 |
Reardon E. J. ; Wang Y. Environ. Sci. Technol. 2000, 34 (15), 3247.
doi: 10.1021/es990542k |
5 |
Zhu J. ; Zhao H. ; Ni J. Sep. Purif. Technol. 2007, 56 (2), 184.
doi: 10.1016/j.seppur.2007.01.030 |
6 |
Lhassani A. ; Rumeau M. ; Benjelloun D. ; Pontie M. Water Res. 2001, 35 (13), 3260.
doi: 10.1016/s0043-1354(01)00020-3 |
7 |
Arora M. ; Maheshwari R. C. ; Jain S. K. ; Gupta A. Desalination 2004, 170 (2), 105.
doi: 10.1016/j.desal.2004.02.096 |
8 |
López-Guzmán M. ; Alarcón-Herrera M. T. ; Irigoyen-Campuzano J. R. ; Torres-Castañón L. A. ; Reynoso-Cuevas L. Sci. Total Environ. 2019, 678, 181.
doi: 10.1016/j.scitotenv.2019.04.400 |
9 |
Tahaikt M. ; Achary I. ; Sahli M. A. M. ; Amor Z. ; Taky M. ; Alami A. ; Boughriba A. ; Hafsi M. ; Elmidaoui A. Desalination 2006, 189 (1-3), 215.
doi: 10.1016/j.desal.2005.06.027 |
10 |
Gmar S. ; Ilhem B. S. S. ; Helali N. ; Tlili M. ; Ben Amor M. Environ. Process. 2015, 2 (1), 209.
doi: 10.1007/s40710-015-0112-4 |
11 |
Vaaramaa K. ; Lehto J. Desalination 2003, 155 (2), 157.
doi: 10.1016/S0011-9164(03)00293-5 |
12 |
Meenakshi S. ; Viswanathan N. J. Colloid Interface Sci. 2007, 308 (2), 438.
doi: 10.1016/j.jcis.2006.12.032 |
13 | Xu X. ; Liao Y. ; Sun J. ; Wang X. ; Chen S. ; Lv Z. ; Song J. Acta Phys. -Chim. Sin. 2019, 35 (3), 317. |
徐向宇; 廖艳清; 孙建川; 王旭辉; 陈帅奇; 吕志; 宋家庆. 物理化学学报, 2019, 35 (3), 317.
doi: 10.3866/PKU.WHXB201805021 |
|
14 |
Mirna H. ; Andrew F. Materials 2014, 7 (9), 6317.
doi: 10.3390/ma7096317 |
15 |
Kamble S. P. ; Deshpande G. ; Barve P. P. ; Rayalu S. ; Labhsetwar N. K. ; Malyshew A. ; Kulkarni B. D. Desalination 2010, 264 (1-2), 15.
doi: 10.1016/j.desal.2010.07.001 |
16 |
Tripathy S. S. ; Raichur A. M. J. Hazard. Mater. 2008, 153 (3), 1043.
doi: 10.1016/j.jhazmat.2007.09.100 |
17 |
Tripathy S. S. ; Bersillon J. L. ; Gopal K. Sep. Purif. Technol. 2006, 50 (3), 310.
doi: 10.1016/j.seppur.2005.11.036 |
18 |
Goswami A. ; Purkait M. K. Chem. Eng. Res. Des. 2012, 90 (12), 2316.
doi: 10.1016/j.cherd.2012.05.002 |
19 |
Abe I. ; Iwasaki S. ; Tokimoto T. ; Kawasaki N. ; Nakamura T. ; Tanada S. J. Colloid Interface Sci. 2004, 275 (1), 35.
doi: 10.1016/j.jcis.2003.12.031 |
20 |
Li Y. H. ; Wang S. ; Zhang X. ; Wei J. ; Xu C. ; Luan Z. ; Wu D. Mater. Res. Bull. 2003, 38 (3), 469.
doi: 10.1016/s0025-5408(02)01063-2 |
21 |
Cai J. ; Zhao X. ; Zhang Y. ; Zhang Q. ; Pan B. J. Colloid Interface Sci. 2018, 509, 353.
doi: 10.1016/j.jcis.2017.09.038 |
22 |
Zhang T. ; Li Q. ; Xiao H. ; Mei Z. ; Zhou Y. Appl. Clay Sci. 2013, 72, 117.
doi: 10.1016/j.clay.2012.12.003 |
23 |
Onyango M. S. ; Kojima Y. ; Kumar A. ; Kuchar D. ; Kubota M. ; Matsuda H. Sep. Sci. Technol. 2006, 41 (4), 683.
doi: 10.1080/01496390500527019 |
24 |
Tor A. ; Danaoglu N. ; Arslan G. ; Cengeloglu Y. J. Hazard. Mater. 2009, 164 (1), 271.
doi: 10.1016/j.jhazmat.2008.08.011 |
25 |
Agarwal M. ; Rai K. ; Shrivastav R. ; Dass S. J. Clean Prod. 2003, 11 (4), 439.
doi: 10.1016/S0959-6526(02)00065-3 |
26 |
Lee G. ; Chen C. ; Yang S. T. ; Ahn W. S. Microporous Mesoporous Mat. 2010, 127 (1-2), 152.
doi: 10.1016/j.micromeso.2009.07.007 |
27 |
Song J. ; Li Z. ; Xu X. ; He M. ; Yan L. Ind. Eng. Chem. Res. 2013, 52 (23), 7752.
doi: 10.1021/ie400627y |
28 |
Peng L. ; Xu X. ; Lv Z. ; Song J. ; He M. ; Wang Q. ; Yan L. ; Li Y. ; Li Z. J. Therm. Anal. Calorim. 2012, 110 (2), 749.
doi: 10.1007/s10973-011-1962-2 |
29 | Song, J.; Sun, J.; Lu, L.; Xu, X.; Lv, Z. A Kind of Controllable Method for Preparing of Boehmite with Large Surface Area and Large Pore Volume. CN Patent 104692429 B, 2015-02-16. |
宋家庆,孙建川,卢磊,徐向宇,吕志.一种大比表面积大孔体积薄水铝石的可控制备方法:中国, CN104692429B[P]. 2015年2月16日. | |
30 |
Charles E. ; Corbató. Clay Clay Min. 1985, 33 (1), 71.
doi: 10.1346/CCMN.1985.0330108 |
31 |
Tettenhorst R. T. Clay Clay Min. 1988, 36 (2), 181.
doi: 10.1346/CCMN.1988.0360213 |
32 |
Sing K. S. W. ; Everett D. H. ; Haul R. A. W. ; Moscou L. ; Pierotti R. A. ; Rouquerol J. ; Siemieniewska T. Pure Appl. Chem. 1985, 57 (4), 603.
doi: 10.1002/9783527610044.hetcat0065 |
33 | Schüth, F.; Sing, K. S. W.; Weitkamp, J. Handbook of Porous Solids; Wiley-Vch, 2002, p. 261. doi: 10.1002/9783527618286 |
34 |
Wang M. ; Yu X. ; Yang C. ; Yang X. ; Lin M. ; Guan L. ; Ge M. Chem. Eng. J. 2017, 322, 246.
doi: 10.1016/j.cej.2017.03.155 |
35 |
Wang S. G. ; Ma Y. ; Shi Y. J. ; Gong W. X. J. Chem. Technol. Biotechnol. 2009, 84 (7), 1043.
doi: 10.1002/jctb.2131 |
36 |
He Y. X. ; Zhang M. L. ; An X. ; Wan G. P. ; Zhu W. J. ; Luo Y. M. Sci. Total Environ. 2019, 688, 184.
doi: 10.1016/j.scitotenv.2019.06.175 |
37 | Lagergren S. K. Seven. Vetensk. Acad. Handl. 1898, 24, 1. |
38 |
Ho Y. S. J. Hazard. Mater. 2006, 136 (3), 681.
doi: 10.1002/chin.200648222 |
39 |
Langmuir I. J. Am. Chem. Soc. 1916, 38 (11), 2221.
doi: 10.1016/S0016-0032(17)90938-X |
40 |
Freundlich H. Z. Phys. Chem. 1907, 57 (1), 385.
doi: 10.1515/zpch-1907-5723 |
41 |
Jiménez-Becerril J. ; Solache-Ríos M. ; García-Sosa I. Water Air Soil Pollut. 2012, 223 (3), 1073.
doi: 10.1007/s11270-011-0925-3 |
42 |
Kumar E. ; Bhatnagar A. ; Kumar U. ; Sillanpää M. J. Hazard. Mater. 2011, 186 (2-3), 1042.
doi: 10.1016/j.jhazmat.2010.11.102 |
43 |
Raichur A. M. ; Basu M. J. Sep. Purif. Technol. 2001, 24 (1-2), 121.
doi: 10.1016/S1383-5866(00)00219-7 |
44 |
Valdivieso A. L. ; Bahena J. L. R. ; Song S. ; Urbina R. H. J. Colloid Interface Sci. 2006, 298 (1), 1.
doi: 10.1016/j.jcis.2005.11.060 |
45 |
de Lint W. B. S. ; Benes N. E. ; Lyklema J. ; Bouwmeester H. J. M. ; van der Linde A. J. ; Wessling M. Langmuir 2003, 19 (14), 5861.
doi: 10.1021/la026864a |
[1] | 卢浩然, 魏雅清, 龙闰. 纳米孔缺陷导致单层黑磷电荷局域极大抑制非辐射电子-空穴复合的时域模拟[J]. 物理化学学报, 2022, 38(5): 2006064 - . |
[2] | 常明凯, 胡娜, 李遥, 鲜东帆, 周万强, 王静一, 时燕琳, 刘春立. Eu(Ⅲ)在蒙脱石上的吸附及碳酸根和磷酸根对其吸附的影响[J]. 物理化学学报, 2022, 38(3): 2003031 - . |
[3] | 赵康宁, 李潇, 苏东. 高熵纳米合金在电化学催化中的应用[J]. 物理化学学报, 2021, 37(7): 2009077 - . |
[4] | 李天, 郝晓杰, 白莎, 赵宇飞, 宋宇飞. 单层类水滑石纳米片的可控合成及规模生产展望[J]. 物理化学学报, 2020, 36(9): 1912005 - . |
[5] | 王文元, 张杰夫, 李喆, 邵翔. 单原子分散的Au/Cu(111)表面合金的表面结构与吸附性质[J]. 物理化学学报, 2020, 36(8): 1911035 - . |
[6] | 孙冠卿, 易宗霖, 魏涛. 胶体颗粒稳定的界面及胶体颗粒在界面的相互作用[J]. 物理化学学报, 2020, 36(10): 1910005 - . |
[7] | 薛楷, 闫敏楠, 潘飞, 田梦颖, 潘旭东, 张宏梅. C60与MoO3混合材料做空穴注入层的单层有机电致发光器件[J]. 物理化学学报, 2019, 35(8): 896 -902 . |
[8] | 韩萌茹,周亚男,周旋,储伟. 通过g-C3N4担载MNi12 (Fe, Co, Cu, Zn)纳米团簇调节甲烷化[J]. 物理化学学报, 2019, 35(8): 850 -857 . |
[9] | 姜哲,于飞,马杰. 石墨烯基吸附剂的设计及其对水中抗生素的去除[J]. 物理化学学报, 2019, 35(7): 709 -724 . |
[10] | 徐向宇,廖艳清,孙建川,王旭辉,陈帅奇,吕志,宋家庆. 活性氧化铝及其再生氧化铝对水中氟离子的吸附[J]. 物理化学学报, 2019, 35(3): 317 -326 . |
[11] | 何妍,李豪,周莉,徐婷,彭昌军,刘洪来. 新型芳香三嗪超交联多孔聚合物去除水溶液中甲基橙[J]. 物理化学学报, 2019, 35(3): 299 -306 . |
[12] | 谷雨星,杨娟,汪的华. CO2熔盐电化学转化碳材料的电化学特性[J]. 物理化学学报, 2019, 35(2): 208 -214 . |
[13] | 陈帅,高峻峰,SRINIVASAN Bharathi M.,张永伟. 单层和双层二硫化钼化学气相沉积生长的动力学蒙特卡罗模拟研究[J]. 物理化学学报, 2019, 35(10): 1119 -1127 . |
[14] | 林雪婷,付名利,贺辉,吴军良,陈礼敏,叶代启,胡芸,王逸凡,WENWilliam. 以金属有机骨架为牺牲模板制备MnOx-CeO2及其催化氧化[J]. 物理化学学报, 2018, 34(6): 719 -730 . |
[15] | 段园,陈明树,万惠霖. O2和CO在Ni(111)表面的吸附活化[J]. 物理化学学报, 2018, 34(12): 1358 -1365 . |
|