物理化学学报 >> 2021, Vol. 37 >> Issue (2): 2009011.doi: 10.3866/PKU.WHXB202009011

所属专题: 金属锂负极

综述 上一篇    

人工界面层在金属锂负极中的应用

关俊, 李念武(), 于乐()   

  • 收稿日期:2020-09-02 录用日期:2020-09-28 发布日期:2020-10-19
  • 通讯作者: 李念武,于乐 E-mail:linianwu@mail.buct.edu.cn;yule@mail.buct.edu.cn
  • 作者简介:李念武,南京航空航天大学材料加工工程专业博士,现为北京化工大学化工学院副教授。主要致力于可用于储能器件的微纳材料设计
    于乐,新加坡南洋理工大学化学工程专业博士,现为北京化工大学有机无机复合材料国家重点实验室教授。主要致力于电化学储能与转化微纳材料的界面设计及合成的研究工作
  • 基金资助:
    国家自然科学基金(21975015);国家自然科学基金(51902016);国家自然科学基金(21703010);中央高校基本科研业务专项资金(buctrc201829);中央高校基本科研业务专项资金(buctrc201904);山东省重点研发计划(2019TSLH0120)

Artificial Interphase Layers for Lithium Metal Anode

Jun Guan, Nianwu Li(), Le Yu()   

  • Received:2020-09-02 Accepted:2020-09-28 Published:2020-10-19
  • Contact: Nianwu Li,Le Yu E-mail:linianwu@mail.buct.edu.cn;yule@mail.buct.edu.cn
  • About author:Le Yu, Email: yule@mail.buct.edu.cn (L.Y.)
    Nianwu Li, Email: linianwu@mail.buct.edu.cn (N.L.)
  • Supported by:
    the National Natural Science Foundation of China(21975015);the National Natural Science Foundation of China(51902016);the National Natural Science Foundation of China(21703010);the Fundamental Research Funds for the Central Universities(buctrc201829);the Fundamental Research Funds for the Central Universities(buctrc201904);the Key R&D Program of Shandong Province(2019TSLH0120)

摘要:

金属锂具有极高的比容量(3860 mAh·g-1)和最低的电化学反应电位(相对标准氢电位为-3.040 V),被认为是高能量密度二次电池最具潜力的负极材料。然而金属锂负极界面稳定性差、不可控的枝晶生长、沉积/剥离过程中巨大的体积变化等严重阻碍了金属锂负极的商业化应用。在金属锂表面构建一层物理化学性质稳定的人工界面保护层被认为是解决金属锂负极界面不稳定和枝晶生长,缓解体积膨胀带来的界面波动等一系列问题的有效手段。本综述依据界面传导性质,从离子导通而电子绝缘的人工固态电解质界面(SEI)层、离子/电子混合传导界面、纳米界面钝化层三个部分对人工界面保护层进行了归纳总结。分析了人工界面保护层的物质结构与性能之间的构效关系,探讨了如何提高人工界面保护层的物理化学稳定性、界面离子输运、界面强度与柔韧性、界面兼容性等。最后,指出用于金属锂负极的人工界面保护层目前面临的主要挑战,并对其未来的发展进行了展望。

关键词: 金属锂负极, 金属锂电池, 人工界面, 固态电解质界面, 锂枝晶

Abstract:

Lithium (Li) metal is considered as the most promising anode material for high-energy-density batteries owing to its ultra-high theoretical capacity (3860 mAh·g-1) and the lowest negative electrochemical potential (-3.040 V versus standard hydrogen electrode). However, the unstable solid electrolyte interphase (SEI) layers, uncontrollable dendrite growth, and huge volume changes during the plating/stripping processes significantly limit the practical applications of Li metal anodes. Since the unstable SEI layers can promote the nucleation and growth of Li dendrites, they play a crucial role in the decay process of Li metal anodes. The fracture and regeneration of SEI layers continuously consume electrolytes and Li metal anodes during plating/ stripping processes, and the accumulation of SEI layers can increase the interface impedance. Therefore, building artificial interphase layers is one of the most effective strategies to construct a stable SEI, reduce dendrite growth, accommodate large volume changes, and thus obtain excellent cycling performance. In this review, artificial interphase layers have been summarized into three parts based on the conductive properties of interphase, including artificial SEI layers (electronically insulating while ionically conducting), mixed ionic and electronic conductor interphase layers, and nanostructured interphase passivation layers (both ionically and electronically insulating). Artificial SEI layers with high ionic conductivity and low electronic conductivity can be classified into inorganic, organic, and organic/inorganic complex SEI according to the composition of artificial SEI layers. The artificial inorganic SEI layers with a high Young's modulus can suppress the dendrite growth. The artificial organic SEI layers with flexible features can accommodate large interface fluctuations and improve the interphase wettability. The artificial organic/inorganic complex SEI layers with a rigid-flexible structure can restrain dendrite growth and buffer volume change. The mixed ionic and electronic conductor layers possess high ionic conductivity and high Young's modulus, which are beneficial for enhancing the interphase stability and reducing dendrite growth. The artificial alloy mixed conductor layers can improve the Li diffusion coefficient and reduce Li nucleation overpotential, guiding uniform Li plating/stripping. Furthermore, the artificial mixed conductor layers comprising inorganic and organic matter have commendable flexibility and excellent interface compatibility, thereby enhancing the interphase stability and reducing dendrite growth. The nanostructured interphase passivation layers with high chemical stability can deliver Li ion through a confined electrolyte in a uniform porous structure, thereby achieving homogeneous Li plating/stripping. In addition, the structure-effective relationship of artificial interphase layers has been analyzed, and methods for improving the performance of artificial interphase layers, such as physical and chemical stability, ion transportation, interface strength and flexibility, and interfacial compatibility, have been discussed in this review. Finally, we present the main challenge and perspectives of artificial interphase layers.

Key words: Li metal anode, Li metal battery, Artificial interphase, Solid electrolyte interphase, Lithium dendrite