物理化学学报 >> 2021, Vol. 37 >> Issue (6): 2009038.doi: 10.3866/PKU.WHXB202009038
所属专题: 先进光催化剂设计与制备
收稿日期:
2020-09-10
录用日期:
2020-10-13
发布日期:
2020-10-19
通讯作者:
刘升卫
E-mail:liushw6@mail.sysu.edu.cn
作者简介:
Shengwei Liu received his Ph.D. in Materials Chemistry & Physics in 2009 from Wuhan University of Technology. Since 2015 he has been a full professor at the School of Environmental Science and Engineering in Sun Yat-sen University. His research interests focus on environmental catalysis, CO2 capture and conversion, indoor air purification
基金资助:
Jiabi Li, Xi Wu, Shengwei Liu()
Received:
2020-09-10
Accepted:
2020-10-13
Published:
2020-10-19
Contact:
Shengwei Liu
E-mail:liushw6@mail.sysu.edu.cn
About author:
Email: liushw6@mail.sysu.edu.cn; Tel.: +86-20-31130401Supported by:
摘要:
空心结构和特定表面功能赋予球形组装体卓越的高性能与新特性,在催化、光催化、能量转换、存储以及生物医学等领域具有广阔的应用前景。以作者团队的研究结果为主,本综述概述了表面氟化TiO2多孔空心微球(F-TiO2 PHMs)的制备及其光催化应用进展。本文中,F-TiO2 PHMs的合成策略主要包括简化的两步模板法,以及基于氟诱导自转变机制(FMST)的无模板法。与两步模板法相比,FMST法中模板的形成、包覆与去除都在“黑箱”式的一步反应中完成,无需额外的认为处理步骤。FMST法制备F-TiO2 PHMs暗含四个基本步骤:成核、自组装、表面再结晶与自转变。通过控制FMST法的四个基本步骤,经过简单的水热处理可以成功制备高产量的F-TiO2 PHMs,同时F-TiO2 PHMs的多层次微观结构参数,如空腔、多级孔、一次纳米粒子的组成与结构等,均可以很好地裁剪调控。F-TiO2 PHMs在光催化应用中具有增强光吸收、促进传质、降低膜污染等结构优势。同时,F-TiO2 PHMs制备过程原位引入表面氟修饰,带来显著表面氟效应,不仅有利于反应物分子的吸附和活化,而且有利于光生电子和空穴的表面俘获和界面转移。并且,多孔空心结构对客体修饰,如离子掺杂、基团功能化和纳米粒子负载等,表现出更好的相容性和耐受性,可以进一步提高F-TiO2 PHMs的光催化性能。结合F-TiO2 PHMs的主客体协同修饰作用,可以同时增强光吸收范围与强度,降低电荷复合几率,促进传质与吸附,提高表面反应效率,因此整个光催化过程可以综合调控协同优化。综上所述,F-TiO2 PHMs具有丰富的组成/结构参数和优异的理化性质,结合空心结构、分等级多孔性、表面氟化等特征,以及主/客体协同修饰作用,实现一体化调控复杂的光催化过程,改善光催化性能,为光催化技术潜在应用发展提供保障。
李嘉碧, 吴熙, 刘升卫. 表面氟化TiO2空心光催化剂制备及其应用[J]. 物理化学学报, 2021, 37(6): 2009038.
Jiabi Li, Xi Wu, Shengwei Liu. Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications[J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009038.
Fig 2
Simplified two-step templating method for fluorinated TiO2 porous hollow microspheres.(a) Self-templating: Coupled template-synthesis with shell-coating, Adapted from J. Phys Chem. Solids., Elsevier publisher 44.(b) Sacrificial templating: Coupled shell-coating with template-removal(Note: The black dots denote preformed SiO2 microspheres), Adapted from Cryst. Growth Des., ACS publisher 38."
Fig 3
(a) Fluoride-mediated self-transformation(FMST) pathway to fluorinated TiO2 porous hollow microspheres, Adapted from Nanostructured Photocatalysts(Book), Springer publisher 46.(b–d) TEM images of TiO2 microspheres prepared with RF = 1 at 200 ℃ for varying hydrothermal time:(b) 30 min; (c) 9 h; (d) 36 h during FMST pathway. Inset in(b) shows the corresponding XRD pattern, Adapted from J. Catal., Elsevier publisher 17."
Fig 4
(a) SEM and(b) TEM images of fluorinated TiO2 porous hollow microspheres based on FMST mechanism. Inset in(b) shows the corresponding SAED pattern, Adapted from J. Catal., Elsevier publisher 17.(c) Urea-modified synthesis with consequence of less randomly dispersed nanoparticles, Adapted from Nanotechnology, IOP Science publisher 35.(d) Ethanol-modified synthesis with consequence of shell-building nanoparticles evolving into faceted polyhedra. Inset in(d) shows enlarged polyhedral nanobuilding units exposing high percentage of {001} facets, Adapted from J. Am. Chem. Soc., ACS publisher 49."
Fig 6
The unique superstructure of TiO2-based porous hollow photocatalysts brings special advantages in improving(a) light harvesting, (b) mass transfer and(c) membrane antifouling, Adapted from J. Am. Chem. Soc., ACS publisher 58.(d) Nitrogen sorption isotherm(inset) and corresponding pore size distribution of fluorinated TiO2 porous hollow microspheres via two-step templating method: keeping a 0.02 mol·L-1 TiF4 aqueous solution containing preformed microspherical SiO2 template at 60 ℃ for 12 h, Adapted from Cryst. Growth Des., ACS publisher 38."
Fig 8
(a, b) TEM images, (c) HRTEM image, (d) HAADF-STEM image and(e–g) the corresponding EDS elemental mappings of the typical sample Au/THMs. The inset in panel(a) is the corresponding SAED pattern, and the inset in panel(b) is the enlarged image of the outermost shell wall, (h) comparison of the CH4 and CO generation rates for various samples obtained under full spectrum light irradiation, visible-light and AM 1.5 G irradiation. Adapted from J. Mater. Chem. A, RSC publisher 59."
1 | Sun S. C. ; Zhang X. Y. ; Liu X. L. ; Pan L. ; Zhang X. W. ; Zou J. J. Acta Phys. -Chim. Sin 2020, 36, 1905007. |
孙尚聪; 张旭雅; 刘显龙; 潘伦; 张香文; 邹吉军; 物理化学学报, 2020, 36, 1905007.
doi: 10.3866/PKU.WHXB201905007 |
|
2 | Pan J. B. ; Shen S. ; Zhou W. ; Tang J. ; Ding H. Z. ; Wang J. B. ; Chen L. ; Au C. T. ; Yin S. F. Acta Phys. -Chim. Sin 2020, 36, 1905068. |
潘金波; 申升; 周威; 唐杰; 丁洪志; 王进博; 陈浪; 区泽堂; 尹双凤; 物理化学学报, 2020, 36, 1905068.
doi: 10.3866/PKU.WHXB201905068 |
|
3 |
Chen X. ; Mao S. S. Chem. Rev 2007, 107, 2891.
doi: 10.1021/cr0500535 |
4 |
Liu G. ; Wang L. Z. ; Yang H. G. ; Cheng H. M. ; Lu G. Q. J. Mater. Chem 2010, 20, 831.
doi: 10.1039/B909930A |
5 |
Hu X. L. ; Li G. S. ; Yu J. C. Langmuir 2010, 26, 3031.
doi: 10.1021/la902142b |
6 |
Xu Q. L. ; Zhang L. Y. ; Cheng B. ; Fan J. J. ; Yu J. G. Chem 2020, 6, 1543.
doi: 10.1016/j.apsusc.2016.09.093 |
7 |
Meng A. Y. ; Zhang L. Y. ; Cheng B. ; Yu J. G. ACS Appl. Mater. Inter 2019, 11, 5581.
doi: 10.1021/acsami.8b02552 |
8 |
Meng A. Y. ; Zhang L. Y. ; Cheng B. Adv. Mater 2019, 31, 1807660.
doi: 10.1002/adma.201807660 |
9 |
Qi K. Z. ; Cheng B. ; Yu J. G. Chin. J. Catal 2017, 38, 1936.
doi: 10.1016/S1872-2067(17)62962-0 |
10 |
Li X. ; Xie J. ; Jiang C. J. ; Yu J. G. ; Zhang. P. Y Front. Env. Sci. Eng 2018, 12, 14.
doi: 10.1007/s11783-018-1076-1 |
11 |
Fu J. W. ; Jiang K. X. ; Qiu X. Q. ; Yu J. G. ; Liu M. Mater. Today 2020, 32, 222.
doi: 10.1016/j.mattod.2019.06.009 |
12 |
Yu J. C. ; Yu J. G. ; Ho W. K. ; Jiang Z. T. ; Zhang L. Z. Chem. Mater 2002, 14, 3808.
doi: 10.1002/chin.200247012 |
13 |
He F. ; Zhu B. C. ; Cheng B. ; Yu J. G. ; Ho W. K. ; Macyk W. Appl. Catal. B: Environ 2020, 272, 119006.
doi: 10.1016/j.apcatb.2020.119006 |
14 |
Shen J. ; Wang R. ; Liu Q. Q. ; Yang X. F. ; Tang H. ; Yang J. Chin. J. Catal 2019, 40, 380.
doi: 10.1016/S1872-2067(18)63166-3 |
15 |
Huang G. C. ; Liu X. Y. ; Shi S. R. ; Li S. T. ; Xiao Z. T. ; Zhen W. Q. ; Liu S. W. ; Wong P. K. Chin. J. Catal 2020, 41, 50.
doi: 10.1016/S1872-2067(19)63424-8 |
16 |
Wang W. K. ; Xu D. F. ; Cheng B. ; Yu J. G. ; Jiang C. J. J. Mater. Chem. A 2017, 5, 5020.
doi: 10.1039/c6ta11121a |
17 |
Yu J. G. ; Liu S. W. ; Yu H. G. J. Catal 2007, 249, 59.
doi: 10.1016/j.jcat.2007.03.032 |
18 |
Li X. ; Yu J. G. ; Jaroniec M. Chem. Soc. Rev 2016, 45, 2603.
doi: 10.1039/C5CS00838G |
19 |
Duan Y. Y. ; Liang L. ; Lv K. L. ; Li Q. ; Li M. Appl. Surf. Sci 2018, 456, 817.
doi: 10.1016/j.apsusc.2018.06.128 |
20 |
Hu Z. ; Yang C. ; Lv K. L. ; Li X. F. ; Li Q. ; Fan J. J. Chem Comm 2020, 56, 1745.
doi: 10.1039/C9CC08578E |
21 |
Xia Y. ; Li Q. ; Lv K. L. ; Li M. Appl. Surf. Sci 2017, 398, 81.
doi: 10.1016/j.apsusc.2016.12.006 |
22 |
Li Q. ; Xia Y. ; Yang C. ; Lv K. L. ; Lei M. ; Li M. Chem. Eng. J 2018, 349, 287.
doi: 10.1016/j.cej.2018.05.094 |
23 | Zhang J. W. ; Wang S. ; Liu F. S. ; Fu X. J. ; Ma G. Q. ; Hou M. S. ; Tang Z. Acta Phys. -Chim. Sin 2019, 35, 885. |
章家伟; 王晟; 刘福生; 付小杰; 马国权; 侯美顺; 唐卓; 物理化学学报, 2019, 35, 885.
doi: 10.3866/PKU.WHXB20181202 |
|
24 |
Liu Y. ; Xiao Z. Z. ; Cao S. ; Li J. H. ; Piao L. Y. Chin. J. Catal 2020, 41, 219.
doi: 10.1016/S1872-2067(19)63477-7 |
25 |
Zhu Y. G. ; Zhang Z. Y. ; Lu N. ; Hua R. N. ; Dong B. Chin. J. Catal 2019, 40, 413.
doi: 10.1016/S1872-2067(18)63182-1 |
26 |
Wang J. Y. ; Liu B. S. ; Nakata K. Chin. J. Catal 2019, 40, 403.
doi: 10.1016/S1872-2067(18)63174-2 |
27 |
Lou X. W. ; Archer L. A. ; Yang Z. C. Adv. Mater 2008, 20, 3987.
doi: 10.1002/adma.200800854 |
28 |
Zhang Q. ; Wang W. S. ; Goebl J. ; Yin Y. D. Nano Today 2009, 4, 494.
doi: 10.1016/j.nantod.2009.10.008 |
29 |
Yu L. ; Yu X. Y. ; Lou X. W. Adv. Mater 2018, 30, 1800939.
doi: 10.1002/adma.201800939 |
30 |
Zhang P. ; Lou X. W. Adv. Mater 2018, 31, 1900281.
doi: 10.1002/adma.201900281 |
31 |
Wang S. B. ; Wang Y. ; Zang S. Q. ; Lou X. W. Small Methods 2019, 4, 1900586.
doi: 10.1002/smtd.201900586 |
32 |
Xiao M. ; Wang Z. L. ; Lyu M. Q. ; Luo B. ; Wang S. C. ; Liu G. ; Cheng H. M. ; Wang L. Z. Adv. Mater 2019, 31, 1801369.
doi: 10.1002/adma.201801369 |
33 |
Yu J. G. ; Guo H. T. ; Davis S. A. ; Mann S. Adv. Funct. Mater 2006, 16, 2035.
doi: 10.1002/adfm.200600552 |
34 |
Liu S. W. ; Yu J. G. ; Cheng B. ; Jaroniec M. Adv. Colloid Interface Sci 2012, 173, 35.
doi: 10.1016/j.cis.2012.02.004 |
35 |
Liu S. W. ; Yu J. G. ; Mann S. Nanotechnology 2009, 20, 325606.
doi: 10.1088/0957-4484/20/32/325606 |
36 |
Yang H. G. ; Zeng H. C. J. Phys. Chem. B 2004, 108, 3492.
doi: 10.1021/jp0377782 |
37 |
Zhou J. K. ; Lv L. ; Yu J. Q. ; Li H. L. ; Guo P. Z. ; Sun H. ; Zhao X. S. J. Phys. Chem. C 2008, 112, 5316.
doi: 10.1021/jp709615x |
38 |
Yu J. G. ; Liu W. ; Yu H. G. Cryst. Growth Des 2008, 8, 930.
doi: 10.1021/cg700794y |
39 |
Yu H. G. ; Yu J. G. ; Cheng B. ; Liu S. W. Nanotechnology 2007, 18
doi: 10.1088/0957-4484/18/6/065604 |
40 |
Li X. F. ; Wu X. F. ; Liu S. W. ; Li Y. H. ; Fan J. J. ; Lv K. L. Chin. J. Catal 2020, 41, 1451.
doi: 10.1016/S1872-2067(20)63594-X |
41 |
Chen L. Q. ; Tian L. J. J. ; Xie J. Y. ; Zhang C. J. ; Chen J. N. ; Wang Y. ; Li Q. ; Lv K. L. ; Deng K. J. Appl. Surf. Sci 2020, 504, 144353.
doi: 10.1016/j.apsusc.2019.144353 |
42 |
Lv K. L. ; Cheng B. ; Yu J. G. ; Liu G. Phys. Chem. Chem. Phys 2012, 14, 5349.
doi: 10.1039/C2CP23461K |
43 |
Titirici M. M. ; Antonietti M. ; Thomas A. A. Chem. Mater 2006, 18, 3808.
doi: 10.1021/cm052768u |
44 |
Yu J. G. ; Wang G. H. J. Phys. Chem. Solids 2008, 69, 1147.
doi: 10.1016/j.jpcs.2007.09.024 |
45 |
Guan J. G. ; Mou F. Z. ; Sun Z. G. ; Shi W. D. Chem. Commun 2010, 46, 6605.
doi: 10.1039/C0CC01044H |
46 | Liu, S.W.; Yu, J. G. Chapter 10: Effect of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. In Nanostructured Photocatalysts; Yamashita, H., Li, H. X., Eds.; Publisher: Springer International Publishing, Switzerland, 2016; pp. 187–200. doi:0.1007/978-3-319-26079-2 |
47 |
Zeng H. C. J. Mater. Chem 2006, 16, 649.
doi: 10.1039/b511296f |
48 |
Liu B. ; Zeng H. C. Small 2005, 1, 566.
doi: 10.1002/smll.200500020 |
49 |
Liu S. W. ; Yu J. G. ; Jaroniec M. J. Am. Chem. Soc 2010, 132, 11914.
doi: 10.1021/ja105283s |
50 |
Liu Ye ; Xiao Z. Z. ; Cao S. ; Li J. H. ; Piao L. Y. Chin. J. Catal 2020, 41, 291.
doi: 10.1016/S1872-2067(19)63477-7 |
51 | Gong C. ; Xiang S. W. ; Zhang Z. Y. ; Sun L. ; Ye C. Q. ; Lin C. J. Acta Phys. -Chim. Sin 2019, 35, 616. |
弓程; 向思弯; 张泽阳; 孙岚; 叶陈清; 林昌健; 物理化学学报, 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082 |
|
52 |
Liu S. W. ; Huang G. C. ; Yu J. G. ; Ng T. W. ; Yip H. Y. ; Wong P. K. ACS Appl. Mater. Interfaces 2014, 6, 2407.
doi: 10.1021/am4047975 |
53 |
Liu S. W. ; Xia J. Q. ; Yu J. G. ACS Appl. Mater. Interfaces 2015, 7, 8166.
doi: 10.1021/acsami.5b00982 |
54 |
Liu S. W. ; Yu J. G. ; Wang W. G. Phys. Chem. Chem. Phys 2010, 12, 12308.
doi: 10.1039/C0CP00036A |
55 |
Liu S. W. ; Yu J. G. ; Mann S. J. Phys. Chem. C 2009, 113, 10712.
doi: 10.1021/jp902449b |
56 |
Yu J. G. ; Liu S. W. ; Zhou M. H. J. Phys. Chem. C 2008, 112, 2050.
doi: 10.1021/jp0770007 |
57 |
Xiang Q. J. ; Yu J. G. ; Cheng B. ; Ong H. C. Chem.-Asian J 2010, 5, 1466.
doi: 10.1002/asia.200900695 |
58 |
Li H. X. ; Bian Z. F ; Zhu J. ; Zhang D. Q. ; Li G. S. ; Huo Y. N. ; Li H. ; Lu Y. F. J. Am. Chem. Soc 2007, 129, 8406.
doi: 10.1021/ja072191c |
59 |
Liu X. Y. ; Ye M. ; Zhang S. P. ; Huang G. C. ; Li C. H. ; Yu J. G. ; Wong P. K. ; Liu S. W. J. Mater. Chem. A 2018, 6, 24245.
doi: 10.1039/C8TA09661A |
60 |
Pan J. H. ; Zhang X. W. ; Du A. J. ; Sun D. D. ; Leckie J. O. J. Am. Chem. Soc 2008, 130, 11256.
doi: 10.1021/ja803582m |
61 |
Wang Q. ; Chen C. C. ; Zhao D. ; Ma W. H. ; Zhao J. C. Langmuir 2008, 24, 7338.
doi: 10.1021/la800313s |
62 |
Liu S. W. ; Yin K. ; Ren W. S. ; Cheng B. ; Yu J. G. J. Mater. Chem 2012, 22, 17759.
doi: 10.1039/c2jm33337f |
63 |
Kim J. W. ; Monllor-Satoca D. ; Choi W. Y. Energy Environ. Sci 2012, 5, 7647.
doi: 10.1039/C2EE21310A |
[1] | 李钱, 胡静, 周易, 王海强, 吴忠标. La掺杂BiOI微球可见光下光催化氧化NO性能研究[J]. 物理化学学报, 2021, 37(8): 2009100 - . |
[2] | 周雪梅. 二氧化钛负载单原子催化剂用于光催化反应的研究[J]. 物理化学学报, 2021, 37(6): 2008064 - . |
[3] | 章家伟, 王晟, 刘福生, 付小杰, 马国权, 侯美顺, 唐卓. 缺陷TiO2-x中空微球的制备及光催化降解亚甲基蓝性能[J]. 物理化学学报, 2019, 35(8): 885 -895 . |
[4] | 郭峰, 陈鹏, 康拓, 王亚龙, 刘承浩, 沈炎宾, 卢威, 陈立桅. 担载纳米硅的锂-碳复合微球作为锂二次电池负极[J]. 物理化学学报, 2019, 35(12): 1365 -1371 . |
[5] | 杨翼,罗来明,陈迪,刘洪鸣,张荣华,代忠旭,周新文. 石墨烯负载PtPd纳米催化剂的合成及其电催化氧化甲醇性能[J]. 物理化学学报, 2017, 33(8): 1628 -1634 . |
[6] | 鞠广凯,陶占良,陈军. α-MnO2纳米管自组装微球的可控制备及电化学性能[J]. 物理化学学报, 2017, 33(7): 1421 -1428 . |
[7] | 张驰,吴志娇,刘建军,朴玲钰. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492 -1498 . |
[8] | 代卫国,何丹农. 手性布洛芬对映体的选择性光电化学氧化[J]. 物理化学学报, 2017, 33(5): 960 -967 . |
[9] | 王叙春,李金泽,李广勇,王锦,张学同,郭强. 气凝胶微球的制备及应用[J]. 物理化学学报, 2017, 33(11): 2141 -2152 . |
[10] | 王丹,刘传勇,龙玥,宋恺,黄维. 尺寸可控的单分散四氧化三铁微球的省时制备[J]. 物理化学学报, 2017, 33(11): 2310 -2316 . |
[11] | 赵菲,时林其,崔佳宝,林艳红. Au纳米粒子负载的ZnO空心球复合材料的光生电荷转移行为及光催化活性[J]. 物理化学学报, 2016, 32(8): 2069 -2076 . |
[12] | 罗雯,黄磊,关豆豆,贺汝涵,李枫,麦立强. 空心碳球负载二硫化硒复合材料作为锂离子电池正极材料[J]. 物理化学学报, 2016, 32(8): 1999 -2006 . |
[13] | 田春霞,杨军帅,李丽,张小华,陈金华. 新型耐甲醇氧还原电催化剂——氮掺杂中空碳微球@铂纳米粒子复合材料[J]. 物理化学学报, 2016, 32(6): 1473 -1481 . |
[14] | 杨翼,罗来明,杜娟娟,张荣华,代忠旭,周新文. 电位置换反应在空心结构Pt基燃料电池纳米催化剂中的研究进展[J]. 物理化学学报, 2016, 32(4): 834 -847 . |
[15] | 徐正侠,杨继涛,刘康,郭小强. 溶剂热法合成锐钛矿型二氧化钛纳米晶的形状演化规律[J]. 物理化学学报, 2016, 32(2): 581 -588 . |
|