物理化学学报 >> 2023, Vol. 39 >> Issue (3): 2209033.doi: 10.3866/PKU.WHXB202209033

论文 上一篇    下一篇

水蒸汽浴FeS2高效Fenton降解甲草胺

江吉周1, 余良浪1, 李方轶1, 邓文明1, 潘聪2, 王海涛1,*(), 邹菁1, 丁耀彬2, 邓凤霞3, 黄佳1,*()   

  1. 1 武汉工程大学, 环境生态与生物工程学院, 化学与环境工程学院, 化工与制药学院, 绿色化工程教育部重点实验室, 磷资源开发利用教育部工程研究中心, 新型催化材料湖北省工程研究中心, 武汉 430205
    2 中南民族大学, 资源与环境学院, 武汉 430074
    3 哈尔滨工业大学, 环境学院, 城市水资源与水环境国家重点实验室, 哈尔滨 150090
  • 收稿日期:2022-09-21 录用日期:2022-10-25 发布日期:2022-10-31
  • 通讯作者: 王海涛,黄佳 E-mail:wanghaitao@wit.edu.cn;21070201@wit.edu.cn
  • 基金资助:
    国家自然科学基金(62004143);国家自然科学基金(21876209);湖北省重点研发计划(2022BAA084);湖北省自然科学基金(2021CFB133);中央引导地方科技发展专项基金(2020ZYYD033);能量转换与存储材料化学教育部重点实验室开放基金(2021JYBKF05);磷资源开发利用教育部工程研究中心创新项目(LCX2021003);武汉工程大学绿色化工程教育部重点实验室开放基金(GCP202101)

Water Steam Bathed FeS2 for Highly Efficient Fenton Degradation of Alachlor

Jizhou Jiang1, Lianglang Yu1, Fangyi Li1, Wenming Deng1, Cong Pan2, Haitao Wang1,*(), Jing Zou1, Yaobin Ding2, Fengxia Deng3, Jia Huang1,*()   

  1. 1 School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, School of Chemical Engineering and Pharmacy, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, China
    2 College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
    3 State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
  • Received:2022-09-21 Accepted:2022-10-25 Published:2022-10-31
  • Contact: Haitao Wang, Jia Huang E-mail:wanghaitao@wit.edu.cn;21070201@wit.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(62004143);the National Natural Science Foundation of China(21876209);Key R & D Program of Hubei Province, China(2022BAA084);Natural Science Foundation of Hubei Province, China(2021CFB133);the Central Government Guided Local Science and Technology Development Special Fund Project, China(2020ZYYD033);the Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage, China (HUST), Ministry of Education, China(2021JYBKF05);the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, China(LCX2021003);the Opening Fund of Key Laboratory for Green Chemical Process of Ministry of Education of Wuhan Institute of Technology, China(GCP202101)

摘要:

由于硫化铁在自然环境中的丰富性,其生成活性氧和降解各种有机污染物的类Fenton活性已被广泛研究。然而,由于表面含铁活性位点的暴露有限,它们的类Fenton活性通常不高。在本研究中,以黄铁矿(FeS2)为例,基于水蒸汽对FeS2的热处理,开发了一种提高硫化铁矿物Fenton活性的新策略,研究发现经水蒸汽热处理后的FeS2 (Heat-FeS2)对甲草胺(ACL)的非均相Fenton活性比由水热反应制备的母体FeS2 (Fresh-FeS2)更高。在初始pH为6.3时,Heat-FeS2-Fenton体系对ACL的降解速率为0.48 min−1,约为Fresh-FeS2-Fentton体系的23倍。电子自旋共振分析和苯甲酸探针实验证实,与Fresh-FeS2-Fenton体系相比,在Heat-FeS2-Fenton体系中产生更多的羟基自由基(•OH)和超氧自由基(•O2)。Heat-FeS2的Fenton活性大幅增强主要可归因于含量增加的高活性表面Fe2+/Fe3+组份、较高的Fe2+浸出量和最佳的反应pH条件。扫描电镜,透射电镜,X射线光电子能谱(XPS)和傅里叶变换红外光谱等一系列表征结果表明,热处理可显著促进晶格Fe2+向表面活性Fe2+的转化,同时增强表面SO42−的生成,从而形成高酸性表面。此外,热处理后Fresh-FeS2表面Fe2+在表面总铁中的百分比从13%提高到了Heat-FeS2的29%,而且Heat-FeS2的Fe2+浸出量(0.23 mmol·L−1)也远高于Fresh-FeS2的Fe2+浸出量(< 0.02 mmol·L−1)。为了进一步阐明Heat-FeS2材料ACL降解活性增强的机理,我们通过XPS技术监测类Fenton反应前后Heat-FeS2表面Fe和S物种的变化关系。结果表明,H2O2反应后,Fresh-FeS2和Heat-FeeS2中Fe2+和Fe3+的表面含量显著增加,而S22−物种的表面浓度则相对下降,证实了S22−物种在Fe3+还原为Fe2+循环中的关键作用。重要的是,本研究不仅加深了对FeS2氧化转化、腐蚀及其对天然环境中有毒有机物转化与降解的认识,而且还提供了一种基于硫化铁矿物的高效Fenton氧化方法。

关键词: FeS2, 水蒸汽处理, Fenton, 表面Fe2+, 甲草胺

Abstract:

Fenton-like activity of iron sulfides for the generation of reactive oxygen species and degradation of various organic pollutants has been extensively investigated due to its abundance in the natural environment. However, their Fenton-like activity is usually unsatisfactory due to the limited exposure of surface ferrous reactive sites. In this work, a new strategy to enhance the Fenton-like activity of iron sulfides, using pyrite (FeS2) as a model, was developed based on the heat treatment of FeS2 by water steam. It was found that the FeS2 heat-treated by water steam (Heat-FeS2) exhibited much higher heterogeneous Fenton activity in the degradation of alachlor (ACL) than its parent FeS2 prepared from hydrothermal reaction (Fresh-FeS2). At an initial pH of 6.3, the rate of degradation of ACL by Heat-FeS2 Fenton system was 0.48 min−1, which is ~23 times higher than that of Fresh-FeS2 Fenton system. Electron spin resonance analysis and benzoic acid probe experiments confirmed the production of more hydroxyl (•OH) and superoxide radicals (•O2) in Heat-FeS2 Fenton system than Fresh-FeS2 Fenton system. The increased Fenton-like activity of Heat-FeS2 can be attributed to the increased content of highly reactive surface bonded Fe2+/Fe3+ species, higher amount of leached Fe2+, and optimal reaction pH due to stronger acidification of Heat-FeS2. Characterization studies by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy showed that heat treatment remarkably promoted the transformation of lattice Fe2+ to surface reactive Fe2+, allowing the exposure of more surface reactive Fe2+ and leaching of Fe2+; simultaneously, heat treatment enhanced the generation of surface SO42−, creating a highly acidic surface. The surface Fe2+ percentage in the surface total iron was raised from 13% in Fresh-FeS2 to 29% in Heat-FeS2. Fe2+ leaching from Heat-FeS2 was 0.23 mmol·L−1, much higher than that (< 0.02 mmol·L−1) for Fresh-FeS2. The change in the surface Fe and S species in the Heat-FeS2 system during the Fenton-like reaction was monitored by XPS to elucidate the enhanced Fenton oxidation mechanism. The characterization results showed that after Fenton reaction with H2O2, the surface contents of Fe2+ and Fe3+ species on Fresh-FeS2 and Heat-FeS2 were remarkably raised, while the surface content of S22− species was reduced, confirming the crucial role of S22− in the reductive cycle of Fe3+ to Fe2+. These findings increase understanding of the oxidative transformation and corrosion of iron sulfides and its relevant transformation and degradation of toxic organics in natural environments. The results of this work also provide an efficient Fenton-like oxidation method based on iron sulfides for highly efficient degradation of organic pollutants (e.g. ACL) in aqueous solution.

Key words: FeS2, Water steam treatment, Fenton, Surface Fe2+ species, Alachlor