物理化学学报 >> 2023, Vol. 39 >> Issue (9): 2301005.doi: 10.3866/PKU.WHXB202301005
所属专题: 能源电催化
李萌1, 杨甫林1, 常进法2, Schechter Alex3, 冯立纲1,*()
收稿日期:
2023-01-03
录用日期:
2023-02-08
发布日期:
2023-02-24
通讯作者:
冯立纲
E-mail:ligang.feng@yzu.edu.cn
Meng Li1, Fulin Yang1, Jinfa Chang2, Alex Schechter3, Ligang Feng1,*()
Received:
2023-01-03
Accepted:
2023-02-08
Published:
2023-02-24
Contact:
Ligang Feng
E-mail:ligang.feng@yzu.edu.cn
摘要:
实现绿色甲醇电解制氢需要高效的双功能催化剂。本文采用热处理结合乙二醇还原法成功制备了MoP-NC纳米球负载的超细Pt纳米粒子(平均粒径为2.53 nm)复合催化剂(Pt/MoP-NC)用于高效甲醇电解制氢。MoP-NC纳米球不仅能提高Pt纳米粒子的分散性并且增强Pt的抗中毒能力。电化学测试表明Pt/MoP-NC催化剂在酸性甲醇氧化反应(MOR)和析氢反应(HER)中具有较高的催化性能;其中,MOR的正向扫描峰值电流密度为90.7 mA∙cm−2,是商业Pt/C催化剂的3.2倍,在10 mA∙cm−2的电流密度下,HER的过电位低至30 mV,与商业Pt/C接近。由Pt/MoP-NC||Pt/MoP-NC组装的两电极电解槽驱动10 mA∙cm−2的电流密度仅需要0.67 V的电压,比相同条件下电解水的电压低1.02 V,大大降低了能量输入。Pt/MoP-NC的高催化性能主要来源于Pt活性中心与相邻层状多孔球形结构的MoP-NC载体之间电子效应及配体效应引起的抗一氧化碳中毒能力的提升和含氧物种的容易生成。
李萌, 杨甫林, 常进法, Schechter Alex, 冯立纲. MoP-NC纳米球负载Pt纳米粒子用于高效甲醇电解[J]. 物理化学学报, 2023, 39(9), 2301005. doi: 10.3866/PKU.WHXB202301005
Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis[J]. Acta Phys. -Chim. Sin. 2023, 39(9), 2301005. doi: 10.3866/PKU.WHXB202301005
Fig 1
SEM images of (a) Mo-PDA, (b) MoP-NC and (c) Pt/MoP-NC catalysts. (d) Low-magnified TEM image, (e) high-magnified TEM image (inset: particle size distribution of Pt in Pt/MoP-NC), (f) high-resolution TEM image, (g) SAED pattern, (h) EDS composition, (i–n) HAADF-STEM images and corresponding elemental mappings and (o) overlap image of the Pt/MoP-NC catalyst."
Fig 3
(a) Cyclic voltammograms of the Pt/C, Pt/MoP-NC and Pt/Mo-NC catalysts in N2-saturated 0.5 mol∙L−1 H2SO4 with 1 mol∙L−1 CH3OH at a scan rate of 50 mV∙s−1. (b) Tafel slope of Pt/C, Pt/MoP-NC and Pt/Mo-NC catalysts. (c) Nyquist plots of the prepared electrode at the potential of 0.4 V. (d) CA test at the potential of 0.6 V for all samples. (e) CO stripping voltammograms of Pt/C, Pt/MoP-NC and Pt/Mo-NC catalysts in 0.5 mol·L-1 H2SO4 solution at a scan rate of 20 mV∙s−1. (f) Specific activity and mass activity at the peak potential for MOR."
Fig 4
(a) Polarization curves of Pt/C, Pt/MoP-NC and Pt/Mo-NC in N2-saturated 0.5 mol∙L−1 H2SO4 with 1 mol∙L−1 CH3OH solution at a scan rate of 5 mV·s-1 (without iR-correction). (b) The corresponding Tafel plots of Pt/C, Pt/MoP-NC and Pt/Mo-NC. (c) TOF value of Pt/C, Pt/MoP-NC and Pt/Mo-NC. (d) The polarization curves of Pt/MoP-NC before and after 1000 cycles, the inset shows the chronoamperometry measurements of HER at 10 mA∙cm−2. (e) Polarization curves of Pt/C||Pt/C and Pt/MoP-NC||Pt/MoP-NC electrolyzers in 0.5 mol∙L−1 H2SO4 with and without 1 mol∙L−1 CH3OH electrolyte at 5 mV∙s−1. (f) Chronoamperometric curve in a Pt/MoP-NC||Pt/MoP-NC electrolyzer in 0.5 mol∙L−1 H2SO4 with 1 mol∙L−1 CH3OH electrolyte under a constant potential of 0.67 V."
1 |
Zhou Y. ; Liu H. ; Gu X. C. ; Wu X. ; Feng L. G. Carbon Energy 2022, 4 (5), 924.
doi: 10.1002/cey2.206 |
2 |
Zeng F. ; Mebrahtu C. ; Liao L. F. ; Palkovits R. ; Beine A. K. J. Energy Chem. 2022, 69, 301.
doi: 10.1016/j.jechem.2022.01.025 |
3 | Sun Z. C. ; Luo E. G. ; Meng Q. L. ; Wang X. ; Ge J. J. ; Liu C. P. ; Wei X. Acta Phys. -Chim. Sin. 2022, 38 (3), 2003035. |
孙志聪; 罗二桂; 孟庆磊; 王显; 葛君杰; 刘长鹏; 邢巍; 物理化学学报, 2022, 38 (3), 2003035.
doi: 10.3866/PKU.WHXB202003035 |
|
4 |
Yin Z. Z. ; He R. Z. ; Zhang Y. C. ; Feng L. G. ; Wu X. ; Wågberg T. ; Hu G. Z. J. Energy Chem. 2022, 69, 585.
doi: 10.1016/j.jechem.2022.01.020 |
5 |
Xue H. ; Gong H. ; Yamauchi Y. ; Sasaki T. ; Ma R. Nano Res. Energy 2022, 1, e9120007.
doi: 10.26599/NRE.2022.9120007 |
6 | Yan D. Q. ; Zhang L. ; Chen Z. P. ; Xiao W. P. ; Yang X. F. Acta Phys. -Chim. Sin. 2021, 37 (7), 2009054. |
闫大强; 张林; 陈祖鹏; 肖卫平; 杨小飞; 物理化学学报, 2021, 37 (7), 2009054.
doi: 10.3866/PKU.WHXB202009054 |
|
7 |
Tian Y. F. ; Xue X. Y. ; Gu Y. ; Yang Z. X. ; Hong G. ; Wang C. D. Nanoscale 2020, 12 (45), 23125.
doi: 10.1039/D0NR07227C |
8 |
Ji L. L. ; Wang J. Y. ; Teng X. ; Meyer T. J. ; Chen Z. F. ACS Catal. 2020, 10 (1), 412.
doi: 10.1021/acscatal.9b03623 |
9 |
Li M. ; Gu Y. ; Chang Y. J. ; Gu X. C. ; Tian J. Q. ; Wu X. ; Feng L. G. Chem. Eng. J. 2021, 425, 130686.
doi: 10.1016/j.cej.2021.130686 |
10 |
Huang Y. ; Zhang S. L. ; Lu X. F. ; Wu Z. P. ; Luan D. Y. ; Lou X. W. Angew. Chem., Int. Ed. 2021, 60 (21), 11841.
doi: 10.1002/anie.202103058 |
11 |
Sha L. N. ; Liu T. F. ; Ye K. ; Zhu K. ; Yan J. ; Yin J. L. ; Wang G. L. ; Cao D. X. J. Mater. Chem. A 2020, 8 (35), 18055.
doi: 10.1039/D0TA04944A |
12 |
Jiang N. ; You B. ; Boonstra R. ; Rodriguez I. M. T. ; Sun Y. J. ACS Energy Lett. 2016, 1 (2), 386.
doi: 10.1021/acsenergylett.6b00214 |
13 |
Xu Y. ; Ren T. L. ; Ren K. L. ; Yu S. S. ; Liu M. Y. ; Wang Z. Q. ; Li X. N. ; Wang L. ; Wang H. J. Chem. Eng. J. 2021, 408, 127308.
doi: 10.1016/j.cej.2020.127308 |
14 |
Wang S. L. ; Zhao L. Y. ; Li J. X. ; Tian X. L. ; Wu X. ; Feng L. G. J. Energy Chem. 2022, 66, 483.
doi: 10.1016/j.jechem.2021.08.042 |
15 |
Jiang Y. C. ; Sun H. Y. ; Li Y. N. ; He J. W. ; Xue Q. ; Tian X. L. ; Li F. M. ; Yin S. B. ; Li D. S. ; Chen Y. ACS Appl. Mater. Interfaces 2021, 13 (30), 35767.
doi: 10.1021/acsami.1c09029 |
16 |
Sethu S. P. ; Gangadharan S. ; Chan S. H. ; Stimming U. J. Power Sources 2014, 254, 161.
doi: 10.1016/j.jpowsour.2013.12.103 |
17 |
Zhou Y. ; Wang Q. W. ; Tian X. L. ; Chang J. F. ; Feng L. G. J. Energy Chem. 2022, 75, 46.
doi: 10.1016/j.jechem.2022.08.009 |
18 |
Ju H. ; Giddey S. ; Badwal S. P. S. Electrochim. Acta 2017, 229, 39.
doi: 10.1016/j.electacta.2017.01.106 |
19 |
Ren X. F. ; Lv Q. Y. ; Liu L. F. ; Liu B. H. ; Wang Y. R. ; Liu A. M. ; Wu G. Sustain. Energy Fuels 2020, 4 (1), 15.
doi: 10.1039/C9SE00460B |
20 |
Qiao W. ; Huang X. Y. ; Feng L. G. Chin. J. Struct. Chem. 2022, 41 (7), 16.
doi: 10.14102/j.cnki.0254-5861.2022-0098 |
21 |
Liu D. Y. ; Zeng Q. ; Hu C. Q. ; Chen D. ; Liu H. ; Han Y. S. ; Xu L. ; Zhang Q. B. ; Yang J. Nano Res. Energy 2022, 1, e9120017.
doi: 10.26599/NRE.2022.9120017 |
22 |
Li M. ; Feng L. G. J. Electrochem. 2022, 28 (1), 2106211.
doi: 10.13208/j.electrochem.210621 |
23 |
Xie F. ; Gan M. Y. ; Ma L. Nanoscale 2021, 13 (43), 18226.
doi: 10.1039/D1NR05101F |
24 |
Su N. ; Hu X. L. ; Zhang J. B. ; Huang H. H. ; Cheng J. X. ; Yu J. C. ; Ge C. Appl. Surf. Sci. 2017, 399, 403.
doi: 10.1016/j.apsusc.2016.12.095 |
25 |
Wang Y. ; Du C. Y. ; Sun Y. R. ; Han G. K. ; Kong F. P. ; Yin G. P. ; Gao Y. Z. ; Song Y. Electrochim. Acta 2017, 254, 36.
doi: 10.1016/j.electacta.2017.09.099 |
26 |
Zhang Y. ; Yang J. ; Dong Q. ; Geng H. ; Zheng Y. ; Liu Y. ; Wang W. ; Li C. ; Dong X. ACS Appl. Mater. Interfaces 2018, 10 (31), 26258.
doi: 10.1021/acsami.8b07133 |
27 |
Lei Y. ; Jia M. M. ; Guo P. W. ; Liu J. ; Zhai J. Y. Catal. Commun. 2020, 140, 106000.
doi: 10.1016/j.catcom.2020.106000 |
28 |
Zhao W. C. ; Yuan Y. F. ; Du P. F. ; Yin S. M. ; Guo S. Y. Electrochim. Acta 2021, 389, 138712.
doi: 10.1016/j.electacta.2021.138712 |
29 |
Liu B. C. ; Li H. ; Cao B. ; Jiang J. N. ; Gao R. ; Zhang J. Adv. Funct. Mater. 2018, 28 (30), 1801527.
doi: 10.1002/adfm.201801527 |
30 |
Li J. ; Huang H. ; Cao X. X. ; Wu H. H. ; Pan K. M. ; Zhang Q. B. ; Wu N. T. ; Liu X. M. Chem. Eng. J. 2021, 416, 127677.
doi: 10.1016/j.cej.2020.127677 |
31 |
Fereja S. L. ; Li P. ; Guo J. H. ; Fang Z. Y. ; Zhang Z. W. ; Zhuang Z. H. ; Zhang X. H. ; Liu K. F. ; Chen W. ACS Appl. Nano Mater. 2021, 4 (6), 5992.
doi: 10.1021/acsanm.1c00850 |
32 |
Duan Y. Q. ; Sun Y. ; Wang L. ; Dai Y. ; Chen B. B. ; Pan S. Y. ; Zou J. L. J. Mater. Chem. A 2016, 4 (20), 7674.
doi: 10.1039/C6TA01319H |
33 |
Li J. X. ; Chang Y. J. ; Li D. Z. ; Feng L. G. ; Zhang B. G. Chem. Commun. 2021, 57 (57), 7035.
doi: 10.1039/D1CC02934G |
34 |
Ding X. ; Li M. ; Jin J. ; Huang X. ; Wu X. ; Feng L. Chin. Chem. Lett. 2022, 33 (5), 2687.
doi: 10.1016/j.cclet.2021.09.076 |
35 |
Zhou Y. ; Kuang Y. B. ; Hu G. Z. ; Wang X. Z. ; Feng L. G. Mater. Today Phys. 2022, 27, 100831.
doi: 10.1016/j.mtphys.2022.100831 |
36 |
Li S. J. ; Wang R. H. ; Yang X. ; Wu J. ; Meng H. Y. ; Xu H. L. ; Ren Z. Y. ACS Sustain. Chem. Eng. 2019, 7 (13), 11872.
doi: 10.1021/acssuschemeng.9b02473 |
37 |
Pi C. R. ; Huang C. ; Yang Y. X. ; Song H. ; Zhang X. M. ; Zheng Y. ; Gao B. ; Fu J. J. ; Chu P. K. ; Huo K. F. Appl. Catal. B 2020, 263, 118358.
doi: 10.1016/j.apcatb.2019.118358 |
38 |
Gu X. C. ; Wu C. G. ; Wang S. L. ; Feng L. G. Catal. Commun. 2022, 162, 106394.
doi: 10.1016/j.catcom.2021.106394 |
39 |
Ji W. X. ; Shen R. ; Yang R. ; Yu G. Y. ; Guo X. F. ; Peng L. M. ; Ding W. P. J. Mater. Chem. A 2014, 2 (3), 699.
doi: 10.1039/C3TA13708B |
40 |
Hou M. J. ; Teng X. ; Wang J. Y. ; Liu Y. Y. ; Guo L. X. ; Ji L. ; Cheng C. W. ; Chen Z. F. Nanoscale 2018, 10 (30), 14594.
doi: 10.1039/C8NR04246B |
41 |
Lin L. F. ; Chen M. ; Wu L. M. Mater. Chem. Front. 2021, 5 (1), 375.
doi: 10.1039/D0QM00635A |
42 |
Zhang L. J. ; Jin Z. L. ; Tsubaki N. Nanoscale 2021, 13 (44), 18507.
doi: 10.1039/D1NR05452J |
43 |
Chai L. Y. ; Yuan W. Y. ; Cui X. ; Jiang H. Y. ; Tang J. W. ; Guo X. H. RSC Adv. 2018, 8 (47), 26871.
doi: 10.1039/C8RA03909G |
44 |
He M. ; Shu C. Z. ; Zheng R. X. ; Li M. L. ; Ran Z. Q. ; Yan Y. ; Du D. Y. ; Ren L. F. ; Long J. P. Electrochim. Acta 2021, 395, 139211.
doi: 10.1016/j.electacta.2021.139211 |
45 |
Liu H. ; Yang D. W. ; Bao Y. F. ; Yu X. ; Feng L. G. J. Power Sources 2019, 434, 226754.
doi: 10.1016/j.jpowsour.2019.226754 |
46 |
Yu F. Y. ; Xie Y. J. ; Tang H. Q. ; Yang N. T. ; Meng X. X. ; Wang X. B. ; Tian X. L. ; Yang X. Electrochim. Acta 2018, 264, 216.
doi: 10.1016/j.electacta.2018.01.137 |
47 |
Hofmann T. ; Yu T. H. ; Folse M. ; Weinhardt L. ; Bär M. ; Zhang Y. ; Merinov B. V. ; Myers D. J. ; Goddard W. A. Ⅲ ; Heske C. J. Phys. Chem. Lett. 2012, 116 (45), 24016.
doi: 10.1021/jp303276z |
48 |
Ahsan M. A. ; Santiago A. R. P. ; Hong Y. ; Zhang N. ; Cano M. ; Rodriguez-Castellon E. ; Echegoyen L. ; Sreenivasan S. T. ; Noveron J. C. J. Am. Chem. Soc. 2020, 142 (34), 14688.
doi: 10.1021/jacs.0c06960 |
49 |
Dai S. ; Chou J. P. ; Wang K. W. ; Hsu Y. Y. ; Hu A. ; Pan X. Q. ; Chen T. Y. Nat. Commun. 2019, 10 (1), 440.
doi: 10.1038/s41467-019-08323-w |
50 |
Lv Q. Y. ; Ren X. F. ; Liu L. F. ; Guan W. X. ; Liu A. M. Ionics 2020, 26 (3), 1325.
doi: 10.1007/s11581-019-03280-2 |
51 |
Zhou Y. ; Liu D. Y. ; Qiao W. ; Liu Z. ; Yang J. ; Feng L. G. Mater. Today Phys. 2021, 17, 100357.
doi: 10.1016/j.mtphys.2021.100357 |
52 |
Wei D. Y. ; Ma L. ; Gan M. Y. ; Han S. C. ; Shen J. ; Ding J. J. ; Zhan W. ; Zhou C. L. ; Zhong X. J. ; Xie F. Int. J. Hydrogen Energy 2020, 45 (7), 4875.
doi: 10.1016/j.ijhydene.2019.12.064 |
53 |
Bao Y. F. ; Wang F. L. ; Gu X. C. ; Feng L. G. Nanoscale 2019, 11 (40), 18866.
doi: 10.1039/C9NR07158J |
54 |
Li G. Q. ; Feng L. G. ; Chang J. F. ; Wickman B. ; Grönbeck H. ; Liu C. P. ; Xing W. ChemSusChem 2014, 7 (12), 3374.
doi: 10.1002/cssc.201402705 |
55 |
Zhang K. F. ; Wang H. F. ; Qiu J. ; Wu J. ; Wang H. J. ; Shao J. W. ; Deng Y. Q. ; Yan L. F. Chem. Eng. J. 2021, 421, 127786.
doi: 10.1016/j.cej.2020.127786 |
56 |
Zhou Y. ; Wang Q. ; Tian X. ; Feng L. Nano Res. 2022, 15 (10), 8936.
doi: 10.1007/s12274-022-4907-0 |
57 |
Hao Y. F. ; Wang X. D. ; Zheng Y. Y. ; Shen J. F. ; Yuan J. H. ; Wang A. J. ; Niu L. ; Huang S. T. Electrochim. Acta 2016, 198, 127.
doi: 10.1016/j.electacta.2016.03.054 |
58 | Bao Y. F. ; Feng L. G. Acta Phys. -Chim. Sin. 2021, 37 (9), 2008031. |
包玉菲; 冯立纲; 物理化学学报, 2021, 37 (9), 2008031.
doi: 10.3866/PKU.WHXB202008031 |
|
59 |
Lu Y. K. ; Yue C. L. ; Li Y. P. ; Bao W. J. ; Guo X. X. ; Yang W. F. ; Liu Z. ; Jiang P. ; Yan W. F. ; Liu S. J. ; et al Appl. Catal. B 2021, 296, 120336.
doi: 10.1016/j.apcatb.2021.120336 |
60 |
Xiao J. ; Zhang Z. Y. ; Zhang Y. ; Lv Q. Y. ; Jing F. ; Chi K. ; Wang S. Nano Energy 2018, 51, 223.
doi: 10.1016/j.nanoen.2018.06.040 |
61 |
He R. Z. ; Huang X. Y. ; Feng L. G. Energy Fuels 2022, 36 (13), 6675.
doi: 10.1021/acs.energyfuels.2c01429 |
[1] | 焦卓浩, 赵心远, 赵健, 谢瑶, 侯胜利, 赵斌. [Co3]簇基金属有机框架材料实现“一石二鸟”高效催化CO2转化为噁唑烷酮[J]. 物理化学学报, 2023, 39(11): 2301018 - . |
[2] | 曹美芳, 陈博, 阮涛, 欧阳新平, 邱学青. Pt/NbPWO双功能催化剂的制备及氢解碱木质素制备芳香单体[J]. 物理化学学报, 2022, 38(10): 2204037 - . |
[3] | 罗芳, 潘书媛, 杨泽惠. 中高温质子交换膜燃料电池催化剂研究进展[J]. 物理化学学报, 2021, 37(9): 2009087 - . |
[4] | 王健, 丁炜, 魏子栋. 超低铂用量质子交换膜燃料电池[J]. 物理化学学报, 2021, 37(9): 2009094 - . |
[5] | 梁嘉顺, 刘轩, 李箐. 提升燃料电池铂基催化剂稳定性的原理、策略与方法[J]. 物理化学学报, 2021, 37(9): 2010072 - . |
[6] | 方波, 冯立纲. Pt纳米颗粒结合ZIF-67衍生的PtCo-NC催化剂用于醇类燃料电氧化[J]. 物理化学学报, 2020, 36(7): 1905023 -0 . |
[7] | 张晓茹,许跃峰,沈守宇,陈媛,黄令,李君涛,孙世刚. 锂氧电池双功能还原石墨烯-LaFeO3复合纳米催化剂的制备及性能[J]. 物理化学学报, 2017, 33(11): 2237 -2244 . |
[8] | 金浩, 孙晓丹, 董澍, 吴义志, 孙素华, 刘杰, 朱慧红, 杨光, 伊晓东, 方维平. Cs取代对Ni-H3PW12O40/SiO2催化剂结构性质和催化性能的影响[J]. 物理化学学报, 2014, 30(3): 527 -534 . |
[9] | 杨晓艳, 孙松, 丁建军, 张义, 张曼曼, 高琛, 鲍骏. [CuO-ZnO-Al2O3]/[HZSM-5]核壳双功能催化剂的制备、结构及其CO2+H2直接合成二甲醚反应性能[J]. 物理化学学报, 2012, 28(08): 1957 -1963 . |
[10] | 王嵩, 毛东森, 郭晓明, 卢冠忠. CuO-TiO2-ZrO2/HZSM-5催化CO2加氢制二甲醚[J]. 物理化学学报, 2011, 27(11): 2651 -2658 . |
[11] | 刘海超, 杨锡尧, 冉国朋, 闵恩泽. 负载离子对型酞菁钴双功能硫醇氧化催化剂[J]. 物理化学学报, 1999, 15(10): 918 -924 . |
|