物理化学学报 >> 2010, Vol. 26 >> Issue (11): 3023-3029.doi: 10.3866/PKU.WHXB20101109

催化和表面结构 上一篇    下一篇

氨基功能化SBA-16对CO2的动态吸附特性

史晶金, 刘亚敏, 陈杰, 张瑜, 施耀   

  1. 浙江大学工业生态与环境研究所, 杭州310028
  • 收稿日期:2010-06-27 修回日期:2010-07-31 发布日期:2010-10-29
  • 通讯作者: 施耀 E-mail:shiyao@zju.edu.cn
  • 基金资助:

    国家自然科学基金(20976159)资助项目

Dynamic Performance of CO2 Adsorption with Amine-Modified SBA-16

SHI Jing-Jin, LIU Ya-Min, CHEN Jie, ZHANG Yu, SHI Yao   

  1. Institute of Industrial Ecology and Environment, Zhejiang University, Hangzhou 310028, P. R. China
  • Received:2010-06-27 Revised:2010-07-31 Published:2010-10-29
  • Contact: SHI Yao E-mail:shiyao@zju.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20976159).

摘要:

采用浸渍法将四乙烯五胺(TEPA)负载到介孔分子筛SBA-16 的孔道内,形成功能化的介孔材料用于CO2的吸附. 利用X 射线衍射(XRD)、透射电镜(TEM)、氮气物理吸附-脱附和热重分析(TGA)等方法对样品进行了表征. 通过动态吸附对不同TEPA 浸渍量的SBA-16 的CO2吸附性能和再生性能进行研究. 结果表明: 修饰后的SBA-16 仍然保持有序的孔道结构, 但样品的孔道有序度降低, 比表面积、孔容、平均孔径都减小. 样品对CO2的饱和吸附容量和穿透吸附容量随着TEPA浸渍量的增加而增加. 60℃时, 30%TEPA 浸渍量的样品的穿透吸附容量和饱和吸附容量达到最大, 分别为0.625 和0.973 mmol·g-1. 在60-80℃, 样品的动态吸附性能稳定. 经过20次吸附-脱附循环后,样品的饱和吸附容量仅降低了6.45%.采用失活模型对CO2的吸附穿透曲线进行模拟, 该模型能够很好地模拟样品对CO2的吸附过程.

 

关键词: SBA-16, 动态, 穿透曲线, 失活模型, CO2吸附

Abstract:

Novel CO2 adsorbents for CO2 removal were prepared by introducing tetraethylenepentamine (TEPA) into SBA-16 type mesoporous silica using a post-synthetic impregnation method. The properties of the mesoporous materials before and after surface modification were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and N2 adsorption-desorption. We confirmed that TEPA was loaded onto the surface of the channels in the mesoporous materials. The surface area, pore size, and pore volume of TEPA-loaded SBA-16 decreased with an increase in TEPA loading while its fundamental pore structure was unchanged. The dynamic adsorption of CO2 onto TEPA-loaded SBA-16 as well as its regeneration property was studied in a packed column. The total adsorption capacity and breakthrough capacity increased when the amount of loaded TEPA increased from 10% to 30% (w). The sample impregnated with 30% TEPA showed the highest breakthrough capacity and total adsorption capacity of about 0.625 and 0.973 mmol·g-1 at 60℃, respectively. From 60℃ to 80℃, the CO2 dynamic adsorption behavior of TEPA-loaded SBA-16 was stable. The total adsorption capacity of CO2 on TEPA-loaded SBA-16 dropped slightly (6.45%) after 20 adsorption-desorption regeneration cycles. Their CO2 adsorption behavior was also investigated using the deactivation model, which showed an excellent predictive capability for the breakthrough curves.

 

Key words: SBA-16, Dynamic, Breakthrough curve, Deactivation model, CO2 adsorption