物理化学学报 >> 2012, Vol. 28 >> Issue (10): 2237-2248.doi: 10.3866/PKU.WHXB201209102
艾勇, 张浩力
收稿日期:
2012-07-06
修回日期:
2012-09-10
发布日期:
2012-09-26
通讯作者:
张浩力
E-mail:haoli.zhang@lzu.edu.cn
基金资助:
国家重点基础研究发展规划项目(973) (2012CB933102); 国家自然科学基金(21190034, 21073079); 博士点基金(20110211130001)资助
AI Yong, ZHANG Hao-Li
Received:
2012-07-06
Revised:
2012-09-10
Published:
2012-09-26
Supported by:
The project was supported by the National Key Basic Research Program (973) (2012CB933102), National Natural Science Foundation of China (21190034, 21073079), Specialized Research Fund for the Doctoral Program of Higher Education (20110211130001).
摘要:
分子电子学已成为21世纪研究的热点. 通过将具有特定功能的分子连接在纳米尺度金属电极之间从而构筑包括分子导线、开关、整流器在内的各种分子尺度电子器件, 这引起了科学家们广泛的研究兴趣. 在分子电子学研究中, 构筑金属/分子/金属(MMM)分子结是研究分子器件中电子传输性质的关键. 尽管已经取得了很大的进展, 目前在纳米尺度下构筑稳定可靠的MMM分子结并测试单个分子的电学性质仍然面临很多挑战. 本文着重对单分子电学性质的测试技术和相关理论研究的最新进展以及存在的挑战做了概述.
艾勇, 张浩力. 单分子结的构筑及分子电导性质的测试[J]. 物理化学学报, 2012, 28(10): 2237-2248.
AI Yong, ZHANG Hao-Li. Construction and Conductance Measurement of Single Molecule Junctions[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2237-2248.
(1) Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003,421, 241. doi: 10.1038/nature01353 (2) Peumans, P.; Yakimov, A.; Forrest, S. R. J. Appl. Phys. 2003, 93,3693. doi: 10.1063/1.1534621 (3) Cotrone, S.; Cafagna, D.; Cometa, S.; De Giglio, E.; Magliulo,M.; Torsi, L.; Sabbatini, L. Anal. Bioanal. Chem. 2012, 403,331. doi: 10.1007/s00216-012-5775-3 (4) Katoh, K.; Isshiki, H.; Komeda, T.; Yamashita, M. Chemistry-an Asian Journal 2012, 7, 1154. doi: 10.1002/asia.v7.6 (5) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.;Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.;Weiss, P. S.Science 1996, 271, 1705. doi: 10.1126/science.271.5256.1705 (6) Tour, J. M. Accounts Chem. Res. 2000, 33, 791. doi: 10.1021/ar0000612 (7) Feynman, R. P. Science 1966, 153, 699. doi: 10.1126/science.153.3737.699 (8) Song, H.; Reed, M. A.; Lee, T. Adv. Mater. 2011, 23, 1583. doi: 10.1002/adma.201004291 (9) Tam, E. S.; Parks, J. J.; Shum,W.W.; Zhong, Y.-W.; Santiago-Berrios, M. E. B.; Zheng, X.; Yang,W.; Chan, G. K. L.; Abruna,H. D.; Ralph, D. C. ACS Nano 2011, 5, 5115. doi: 10.1021/nn201199b (10) Wang, G.; Kim, T.-W.; Jo, G.; Lee, T. J. Am. Chem. Soc. 2009,131, 5980. doi: 10.1021/ja900773h (11) Shiomi, D.; Nozaki, M.; Ise, T.; Sato, K.; Takui, T. J. Phys. Chem. B 2004, 108, 16606. doi: 10.1021/jp046621m (12) Huang, Z.; Xu, B.; Chen, Y.; Di Ventra, M.; Tao, N. Nano Lett.2006, 6, 1240. doi: 10.1021/nl0608285 (13) Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni,R.; Alagia, M.; Fronzoni, G.; Decleva, P. J. Chem. Phys. 2012,136, 134308. doi: 10.1063/1.3698283 (14) Gollub, C.; Avdoshenko, S.; Gutierrez, R.; Berlin, Y.; Cuniberti,G. Isr. J. Chem. 2012, 52, 452. doi: 10.1002/ijch.201100092 (15) Herrera-Lopez, E. J. Lipase and Phospholipase Biosensors: AReview. In Lipases and Phospholipases: Methods and Protocols; Sandoval, G., Ed., 2012; Vol. 861; p 525. (16) Petrov, E. G.; Leonov, V. A.; Shevchenko, Y. V. Low Temp. Phys. 2012, 38, 428. doi: 10.1063/1.4711127 (17) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277. doi: 10.1016/0009-2614(74)85031-1 (18) Aviram, A.; Ratner, M. A.; Mujica, V. Annals of the New YorkAcademy of Sciences. Molecular electronics II. In Annals of the New York Academy of Sciences. Molecular electronics II;Aviram, A., Ratner, M. A., Mujica, V. Eds.; 2002; Vol. 960, p i. (19) Yang,W. R.; Jones, M.W.; Li, X.; Eggers, P. K.; Tao, N.;Gooding, J. J.; Paddon-Row, M. N. J. Phys. Chem. C 2008, 112,9072. doi: 10.1021/jp802328b (20) Wang, L. J.; Zhou, K. G.; Tan, L.;Wang, H.; Shi, Z. F.;Wu, G.P.; Xu, Z. G.; Cao, X. P.; He, H. X.; Zhang, H. L. Chemistry-a European Journal 2011, 17, 8414. doi: 10.1002/chem.201003507 (21) Baldea, I. Chem. Phys. 2012, 400, 65. doi: 10.1016/j.chemphys.2012.02.011 (22) Kalitsov, A. V.; Chshiev, M. G.; Velev, J. P. Phys. Rev. B 2012,85. (23) Bakovets, V. V.; Nadolinnyi, V. A.; Erenburg, S. B.; Kuznetsov,A. M.; Dolgovesova, I. P. Russ. J. Inorg. Chem. 2010, 55, 1897.doi: 10.1134/S0036023610120132 (24) Dei, A.; Sorace, L. Appl. Magn. Reson. 2010, 38, 139. doi: 10.1007/s00723-010-0121-4 (25) Hoffert,W. A.; Rappe, A. K.; Shores, M. P. J. Am. Chem. Soc.2011, 133, 20823. doi: 10.1021/ja206735y (26) Mishchenko, A.; Vonlanthen, D.; Meded, V.; Bürkle, M.; Li,C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers, F.;Mayor, M.;Wandlowski, T. Nano Lett. 2010, 10, 156. doi: 10.1021/nl903084b (27) Yoon, M. H.; DiBenedetto, S. A.; Facchetti, A.; Marks, T. J.J. Am. Chem. Soc. 2005, 127, 1348. doi: 10.1021/ja045124g (28) Danilov, A.; Kubatkin, S.; Kafanov, S.; Hedegard, P.; Stuhr-Hansen, N.; Moth-Poulsen, K.; Bjornholm, T. Nano Lett. 2008,8, 1. doi: 10.1021/nl071228o (29) Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. Am. Chem. Soc. 2006, 128, 15874. doi: 10.1021/ja065864k (30) Martin, S.; Haiss,W.; Higgins, S. J.; Nichols, R. J. Nano Lett.2010, 10, 2019. doi: 10.1021/nl9042455 (31) Scullion, L.; Doneux, T.; Bouffier, L.; Fernig, D. G.; Higgins, S.J.; Bethell, D.; Nichols, R. J. J. Phys. Chem. C 2011, 115, 8361. (32) Damle, P.; Ghosh, A.W.; Datta, S. Chem. Phys. 2002, 281, 171.doi: 10.1016/S0301-0104(02)00496-2 (33) Zhou, L.; Yang, S.W.; Ng, M. F.; Sullivan, M. B.; Tan, V. B. C.;Shen, L. J. Am. Chem. Soc. 2008, 130, 4023. doi: 10.1021/ja7100246 (34) Martin, S.; Grace, I.; Bryce, M. R.;Wang, C.; Jitchati, R.;Batsanov, A. S.; Higgins, S. J.; Lambert, C. J.; Nichols, R. J.J. Am. Chem. Soc. 2010, 132, 9157. doi: 10.1021/ja103327f (35) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.;Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926. doi: 10.1021/cr050140x (36) Zhang, J.; Kuznetsov, A. M.; Medvedev, I. G.; Chi, Q.; Albrecht,T.; Jensen, P. S.; Ulstrup, J. Chem. Rev. 2008, 108, 2737. doi: 10.1021/cr068073+ (37) Fischl, B.; Sereno, M. I.; Dale, A. M. Neuroimage 1999, 9, 195.doi: 10.1006/nimg.1998.0396 (38) Recanzone, G. H.; Schreiner, C. E.; Merzenich, M. M.J. Neurosci. 1993, 13, 87. (39) Ulgut, B.; Abruna, H. D. Chem. Rev. 2008, 108, 2721. doi: 10.1021/cr068060w (40) Kaliginedi, V.; Moreno-Garcia, P.; Valkenier, H.; Hong,W.;Garcia-Suarez, V. M.; Buiter, P.; Otten, J. L. H.; Hummelen, J.C.; Lambert, C. J.;Wandlowski, T. J. Am. Chem. Soc. 2012,134, 5262. doi: 10.1021/ja211555x (41) Chu, C.; Na, J.-S.; Parsons, G. N. J. Am. Chem. Soc. 2007, 129,2287. doi: 10.1021/ja064968s (42) Kay, N. J.; Nichols, R. J.; Higgins, S. J.; Haiss,W.; Sedghi, G.;Schwarzacher,W.; Mao, B.-W. J. Phys. Chem. C 2011, 115,21402. doi: 10.1021/jp206241d (43) Yang, Y.; Liu, J. Y.; Chen, Z. B.; Tian, J. H.; Jin, X.; Liu, B.; Li,X. L.; Luo, Z. Z.; Lu, M.; Yang, F. Z.; Tao, N. J.; Tian, Z. Q.Nanotechnology 2011, 22, 375131. (44) Dudin, P. V.; Snowden, M. E.; Macpherson, J. V.; Unwin, P. R.ACS Nano 2011, 5, 10017. doi: 10.1021/nn203823f (45) Gewirth, A. A.; Niece, B. K. Chem. Rev. 1997, 97, 1129. doi: 10.1021/cr960067y (46) McCarty, G. S.;Weiss, P. S. Chem. Rev. 1999, 99, 1983. doi: 10.1021/cr970110x (47) Janes, D. Nat. Chem. 2009, 1, 601. (48) Pan, S.; Fu, Q.; Huang, T.; Zhao, A.;Wang, B.; Luo, Y.; Yang,J.; Hou, J. Proc. Nat. Acad. Sci. U. S. A. 2009, 106, 15259. doi: 10.1073/pnas.0903131106 (49) Hihath, J.; Bruot, C.; Tao, N. ACS Nano 2010, 4, 3823. doi: 10.1021/nn100470s (50) Li, X.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N. J. Am. Chem. Soc. 2007, 129, 11535. doi: 10.1021/ja072990v (51) Galperin, M.; Ratner, M. A.; Nitzan, A.; Troisi, A. Science 2008,319, 1056. doi: 10.1126/science.1146556 (52) Ren, H.; Yang, J.; Luo, Y. J. Chem. Phys. 2010, 133, 064702.doi: 10.1063/1.3474807 (53) Zhang, Y.;Wang, L. X. Acta Physica Sinica 2011, 60, 047304.[张元, 王鹿霞. 物理学报, 2011, 60, 047304. ] (54) Hihath, J.; Bruot, C.; Nakamura, H.; Asai, Y.; Diez-Perez, I.;Lee, Y.; Yu, L.; Tao, N. ACS Nano 2011, 5, 8331. doi: 10.1021/nn2030644 (55) Zhou, B.; Li, Z. L.; Song, X. N.; Liu, L. F.;Wang, C. K. Acta Phys. -Chim. Sin. 2007, 23, 1577. [邹斌, 李宗良, 宋秀能,刘兰峰, 王传奎. 物理化学学报, 2007, 23, 1577.] doi: 10.3866/PKU.WHXB20071016 (56) Scudiero, L.; Barlow, D. E.; Mazur, U.; Hipps, K.W. J. Am. Chem. Soc. 2001, 123, 4073. doi: 10.1021/ja0100726 (57) Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Science2007, 315, 1568. doi: 10.1126/science.1137149 (58) Kelley, T.W.; Granstrom, E. L.; Frisbie, C. D. Adv. Mater. 1999,11, 261. (59) Loiacono, M. J.; Granstrom, E. L.; Frisbie, C. D. J. Phys. Chem. B 1998, 102, 1679. doi: 10.1021/jp973269m (60) Stotter, J.; Show, Y.;Wang, S. H.; Swain, G. Chem. Mater. 2005,17, 4880. doi: 10.1021/cm050762z (61) Wei, Z.; Li, T.; Jennum, K.; Santella, M.; Bovet, N.; Hu,W.;Nielsen, M. B.; Bjornholm, T.; Solomon, G. C.; Laursen, B.W.;Norgaard, K. Langmuir 2012, 28, 4016. doi: 10.1021/la204340n (62) Morita, T.; Lindsay, S. J. Am. Chem. Soc. 2007, 129, 7262. doi: 10.1021/ja072040+ (63) Scaini, D.; Castronovo, M.; Casalis, L.; Scoles, G. ACS Nano2008, 2, 507. doi: 10.1021/nn700342p (64) Yee, S. K.; Sun, J.; Darancet, P.; Tilley, T. D.; Majumdar, A.;Neaton, J. B.; Segalman, R. A. ACS Nano 2011, 5, 9256. doi: 10.1021/nn203520v (65) Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H.E. Science 1997, 276, 1109. doi: 10.1126/science.276.5315.1109 (66) Kiguchi, M.; Takahashi, T.; Takahashi, Y.; Yamauchi, Y.;Murase, T.; Fujita, M.; Tada, T.;Watanabe, S. Angew. Chem. Int. Edit. 2011, 50, 5708. doi: 10.1002/anie.201100431 (67) Kim, Y.; Pietsch, T.; Erbe, A.; Belzig,W.; Scheer, E. Nano Lett. 2011, 11, 3734. doi: 10.1021/nl201777m (68) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-5729(02)00100-0 (69) Odom, T.W.; Huang, J. L.; Kim, P.; Lieber, C. M. Nature 1998,391, 62. doi: 10.1038/34145 (70) Xu, B.; Tao, N. J. Science 2003, 301, 1221. doi: 10.1126/science.1087481 (71) Hines, T.; Diez-Perez, I.; Hihath, J.; Liu, H.;Wang, Z.-S.; Zhao,J.; Zhou, G.; Muellen, K.; Tao, N. J. Am. Chem. Soc. 2010, 132,11658. doi: 10.1021/ja1040946 (72) Hihath, J.; Arroyo, C. R.; Rubio-Bollinger, G.; Tao, N.; Agrait,N. Nano Lett. 2008, 8, 1673. doi: 10.1021/nl080580e (73) Huang, Z.; Chen, F.; Bennett, P. A.; Tao, N. J. Am. Chem. Soc.2007, 129, 13225. doi: 10.1021/ja074456t (74) Collini, E. Differences Among Coherent Dynamics inEvolutionary Related Light-Harvesting Complexes: Evidencefor Subtle Quantum-Mechanical Strategies for Energy TransferOptimization. In Quantum Optics Ii; Durt, T., Zadkov, V. N.Ed., 2012; Vol. 8440. (75) Shishir, R. S.; Chen, F.; Xia, J.; Tao, N. J.; Ferry, D. K. J. Vac. Sci. Technol. B 2009, 27, 2003. doi: 10.1116/1.3156733 (76) Wang, R.; Whiteis, C. A.; Benson, C. J.; Chapleau, M.W.;Abboud, F. M. Hypertension 2011, 58, E70. (77) Battacharyya, S.; Kibel, A.; Kodis, G.; Liddell, P. A.; Gervaldo,M.; Gust, D.; Lindsay, S. Nano Lett. 2011, 11, 2709. doi: 10.1021/nl200977c (78) Zhang, Y.; Dou, C.;Wang, Y. Appl. Surf. Sci. 2011, 257, 6514.doi: 10.1016/j.apsusc.2011.02.059 (79) Li, Z.; Park, T.-H.; Rawson, J.; Therien, M. J.; Borguet, E. Nano Lett. 2012, 12, 2722. doi: 10.1021/nl2043216 (80) Boardman, B. M.;Widawsky, J. R.; Park, Y. S.; Schenck, C. L.;Venkataraman, L.; Steigerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2011, 133, 8455. doi: 10.1021/ja201334s (81) Kiguchi, M.; Takahashi, T.; Takahashi, Y.; Yamauchi, Y.;Murase, T.; Fujita, M.; Tada, T.;Watanabe, S. Angew. Chem. Int. Edit. 2011, 50, 5707. (82) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M.Science 1997, 278, 252. doi: 10.1126/science.278.5336.252 (83) Gonzalez, M. T.;Wu, S.; Huber, R.; van der Molen, S. J.;Schoenenberger, C.; Calame, M. Nano Lett. 2006, 6, 2238. doi: 10.1021/nl061581e (84) Kang, Z. Y.; Song, H.; Yang, Z. M.; Ding, B. J. Rare. Metal. Mat. Eng. 2005, 34, 680. (85) Kiguchi, M.; Sekiguchi, N.; Murakoshi, K. Surf. Sci. 2007, 601,5262. doi: 10.1016/j.susc.2007.04.218 (86) Kiguchi, M.; Sekiguchi, N.; Murakoshi, K. In-situ Preparationof a Single Molecular Junction with Mechanically ControllableBreak Junctions in Vacuum. In Proceedings of the 17th International Vacuum Congress/13th International Conference on Surf. Sci./International Conference on Nanoscience and Technology; Johansson, L. S. O., Andersen, J. N., Gothelid, M.,Helmersson, U., Mntelius, L., Rubel, M., Setina, J.,Wernersson,L. E. Eds., 2008; Vol. 100. (87) Taniguchi, M.; Morimoto, K.; Tsutsui, M.; Kawai, T. Chem. Lett. 2008, 37, 990. doi: 10.1246/cl.2008.990 (88) Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.;Wu, S. T.;Tao, N.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128, 14748. doi: 10.1021/ja0648615 (89) Tian, J. H.; Liu, B.; Jin, S.; Dai, K.; Chen, Z. B.; Li, X.; Ke,H.;Wu, S. T.; Yang, Y.; Ren, B.; Mao, B.W.; Tao, N.; Tian, Z.Q. A Combined SERS and MCBJ Study on Molecular Junctions on Silicon Chips, In 7th IEEE Conference onNanotechnology, Hong Kong, China, Aug 02-05, 2007;Nanotechnology: 2007. (90) Huber, R.; Gonzalez, M. T.;Wu, S.; Langer, M.; Grunder, S.;Horhoiu, V.; Mayor, M.; Bryce, M. R.;Wang, C. S.; Jitchati,R.; Schonenberger, C.; Calame, M. J. Am. Chem. Soc. 2008,130, 1080. doi: 10.1021/ja0767940 (91) Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; vanRuitenbeek, J. M.; van der Zant, H. S. J. J. Am. Chem. Soc.2008, 130, 13198. doi: 10.1021/ja804699a (92) Meisner, J. S.; Kamenetska, M.; Krikorian, M.; Steigerwald,M. L.; Venkataraman, L.; Nuckolls, C. Nano Lett. 2011, 11,1575. doi: 10.1021/nl104411f (93) Tanaka, H.; Hong, L.; Fukumori, M.; Negishi, R.; Kobayashi,Y.; Tanaka, D.; Ogawa, T. Nanotechnology 2012, 23, 215701.doi: 10.1088/0957-4484/23/21/215701 (94) Guo, X.; Whalley, A.; Klare, J. E.; Huang, L.; O'Brien, S.;Steigerwald, M.; Nuckolls, C. Nano Lett. 2007, 7, 1119. doi: 10.1021/nl070245a (95) Whalley, A. C.; Steigerwald, M. L.; Guo, X.; Nuckolls, C.J. Am. Chem. Soc. 2007, 129, 12590. doi: 10.1021/ja073127y (96) Minary-Jolandan, M.; Yu, M.-F. J. Appl. Phys. 2008, 103,73516. doi: 10.1063/1.2903438 (97) Palaci, I.; Fedrigo, S.; Brune, H.; Klinke, C.; Chen, M.; Riedo,E. Phys. Rev. Lett. 2005, 94, 175502. doi: 10.1103/PhysRevLett.94.175502 (98) Ruoff, R. S.; Tersoff, J.; Lorents, D. C.; Subramoney, S.;Chan, B. Nature 1993, 364, 514. doi: 10.1038/364514a0 (99) Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.;Ruoff, R. S. Science 2000, 287, 637. doi: 10.1126/science.287.5453.637 (100) Diehl, M. R.; Steuerman, D.W.; Tseng, H. R.; Vignon, S. A.;Star, A.; Celestre, P. C.; Stoddart, J. F.; Heath, J. R.ChemPhysChem 2003, 4, 1335. doi: 10.1002/cphc.v4:12 (101) Feldman, A. K.; Steigerwald, M. L.; Guo, X.; Nuckolls, C.Accounts Chem. Res. 2008, 41, 1731. doi: 10.1021/ar8000266 (102) Tsuji, Y.; Staykov, A.; Yoshizawa, K. J. Phys. Chem. C 2009,113, 21477. doi: 10.1021/jp905663r (103) Lee, S. K.; Yamada, R.; Tanaka, S.; Tada, H. ElectricalConductance of Single Oligothiophene MolecularWires:Temperature Effect. In Materials Research Society, 2010 MRSFall Meeting, Boston, Massachusetts, Nov 29-Dec 3, 2010;Cambridge University Press: London, 2011. (104) Andrews, D. Q.; Cohen, R.; Van Duyne, R. P.; Ratner, M. A.J. Chem. Phys. 2006, 125, 174718. (105) Lindsay, S. M.; Ratner, M. A. Adv. Mater. 2007, 19, 23. doi: 10.1002/(ISSN)1521-4095 (106) Tsuji, Y.; Staykov, A.; Yoshizawa, K. J. Phys. Chem. C 2012,116, 2575. doi: 10.1021/jp209547a (107) Brandbyge, M.; Mozos, J. L.; Ordejon, P.; Taylor, J.; Stokbro,K. Phys. Rev. B 2002, 65, 165401. doi: 10.1103/PhysRevB.65.165401 (108) Li, Z. Y.; Kosov, D. S. J. Phys. Chem. B 2006, 110, 9893. doi: 10.1021/jp0610665 (109) Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.;Ordejon, P.; Sanchez-Portal, D. J. Phys. Condes. Matter2002, 14, 2745. doi: 10.1088/0953-8984/14/11/302 (110) Dell'Angela, M.; Kladnik, G.; Cossaro, A.; Verdini, A.;Kamenetska, M.; Tamblyn, I.; Quek, S. Y.; Neaton, J. B.;Cvetko, D.; Morgante, A.; Venkataraman, L. Nano Lett. 2010,10, 2470. doi: 10.1021/nl100817h (111) Hao, H.; Zheng, X.; Song, L.;Wang, R.; Zeng, Z. Phys. Rev. Lett. 2012, 108, 17202. doi: 10.1103/PhysRevLett.108.017202 (112) Mandal, S.; Pati, R. Phys. Rev. B 2011, 83, 195420. doi: 10.1103/PhysRevB.83.195420 (113) Taylor, J.; Guo, H.;Wang, J. Phys. Rev. B 2001, 63, 245407.doi: 10.1103/PhysRevB.63.245407 (114) Tang, Y. H.; Bagci, V. M. K.; Chen, J. H.; Kaun, C. C. J. Phys. Chem. C 2011, 115, 25105. doi: 10.1021/jp209671v (115) Kaun, C. C.; Larade, B.; Guo, H. Phys. Rev. B 2003, 67,121411. doi: 10.1103/PhysRevB.67.121411 (116) Mishchenko, A.; Vonlanthen, D.; Meded, V.; Buerkle, M.; Li,C.; Pobelov, I. V.; Bagrets, A.; Viljas, J. K.; Pauly, F.; Evers,F.; Mayor, M.;Wandlowski, T. Nano Lett. 2010, 10, 156. doi: 10.1021/nl903084b (117) Yu, C.; Liu, H.; Ni,W.; Gao, N.; Zhao, J.; Zhang, H. Phys. Chem. Chem. Phys. 2011, 13, 3461. (118) Liu, H.; Li, P.; Zhao, J.; Yin, X.; Zhang, H. J. Chem. Phys.2008, 129, 224704. doi: 10.1063/1.3030949 (119) Zhang, Y. H.; Zhou, K. G.; Xie, K. F.; Zeng, J.; Zhang, H. L.;Peng, Y. Nanotechnology 2010, 21, 065201. doi: 10.1088/0957-4484/21/6/065201 (120) Tan, L.; Zhou, K. G.; Zhang, Y. H.;Wang, H. X.;Wang, X. D.;Guo, Y. F.; Zhang, H. L. Electrochem. Commun. 2010, 12,557. doi: 10.1016/j.elecom.2010.01.042 (121) Zhang, Y. H.; Chen, Y. B.; Zhou, K. G.; Liu, C. H.; Zeng, J.;Zhang, H. L.; Peng, Y. Nanotechnology 2009, 20, 185504. doi: 10.1088/0957-4484/20/18/185504 (122) Zhang, Y. H.; Zhou, K. G.; Xie, K. F.; Gou, X. C.; Zeng, J.;Zhang, H. L.; Peng, Y. J. Nanosci. Nanotechnol. 2010, 10,7347. doi: 10.1166/jnn.2010.2929 (123) Li, S. D.; Yu, Z.; Yen, S. F.; Tang,W. C.; Burke, P. J. Nano Lett. 2004, 4, 753. doi: 10.1021/nl0498740 (124) Kurth, S.; Stefanucci, G.; Almbladh, C. O.; Rubio, A.; Gross,E. K. U. Phys. Rev. B 2005, 72, 035308. doi: 10.1103/PhysRevB.72.035308 (125) Zhu, Y.; Maciejko, J.; Ji, T.; Guo, H.;Wang, J. Phys. Rev. B2005, 71, 075317. doi: 10.1103/PhysRevB.71.075317 (126) Sai, N.; Bushong, N.; Hatcher, R.; Di Ventra, M. Phys. Rev. B2007, 75, 115410. doi: 10.1103/PhysRevB.75.115410 (127) Ke, S.-H.; Liu, R.; Yang,W.; Baranger, H. U. J. Chem. Phys.2010, 132 , 234105. (128) Huang, J.;Wang,W.;Yang, S.; Li, Q.;Yang, J. Nanotechnology2012, 23, 225202. doi: 10.1088/0957-4484/23/22/225202 (129) Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J.M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.;Treger, D. M. Science 2001, 294, 1488. doi: 10.1126/science.1065389 (130) Kwolek, P.; Oszajca, M.; Szacilowski, K. Coord. Chem. Rev.2012, 256, 1706. doi: 10.1016/j.ccr.2012.03.028 (131) Xu, K.; Huang, J.; Guan, Z.; Li, Q.; Yang, J. Chem. Phys. Lett.2012, 535, 111. doi: 10.1016/j.cplett.2012.03.066 (132) Yuan, L.; Li, Z.; Yang, J.; Hou, J. G. Phys. Chem. Chem. Phys.2012, 14, 8179. (133) Tsukagoshi, K.; Alphenaar, B.W.; Ago, H. Nature 1999, 401,572. doi: 10.1038/44108 (134) Harneit,W.; Boehme, C.; Schaefer, S.; Huebener, K.;Fostiropoulos, K.; Lips, K. Phys. Rev. Lett. 2007, 98, 216601.doi: 10.1103/PhysRevLett.98.216601 (135) Petta, J. R.; Slater, S. K.; Ralph, D. C. Phys. Rev. Lett. 2004,93, 136601. doi: 10.1103/PhysRevLett.93.136601 (136) Xiong, Z. H.;Wu, D.; Vardeny, Z. V.; Shi, J. Nature 2004, 427,821. doi: 10.1038/nature02325 (137) Xu, K.; Huang, J.; Lei, S.; Su, H.; Boey, F. Y. C.; Li, Q.; Yang,J. J. Chem. Phys. 2009, 131, 104704. doi: 10.1063/1.3224175 |
[1] | 林锦亮, 张雅敏, 张浩力. 单分子器件中的新颖静电场效应[J]. 物理化学学报, 2021, 37(12): 2005010 - . |
[2] | 孙汉涛, 廖建辉, 侯士敏. 基于吡嗪连接的石墨烯电极单分子场效应晶体管[J]. 物理化学学报, 2021, 37(10): 1906027 - . |
[3] | 李凯旋, 张泰隆, 李会增, 李明珠, 宋延林. 纳米粒子的精准组装[J]. 物理化学学报, 2020, 36(9): 1911057 - . |
[4] | 余培锴, 冯安妮, 赵世强, 魏珺颖, 杨扬, 师佳, 洪文晶. 基于裂结技术的单分子尺度化学反应研究进展[J]. 物理化学学报, 2019, 35(8): 829 -839 . |
[5] | 陈熙,张胜利. 基于3d元素掺杂的石墨二炔分子传感材料性能调控[J]. 物理化学学报, 2018, 34(9): 1061 -1073 . |
[6] | 韩迪, 洪泽文, 李东方, 郑菊芳, 王亚浩, 周小顺. 基于电化学方法研究以铜和银为电极的对苯二甲酸单分子结电导[J]. 物理化学学报, 2015, 31(1): 105 -110 . |
[7] | 孙倩, 杨熊博, 高亚军, 赵健伟. 不同孪晶界密度银纳米线拉伸形变行为的分子动力学模拟[J]. 物理化学学报, 2014, 30(11): 2015 -2023 . |
[8] | 孙玮, 张晋江, 赵健伟. 纳米器件的分子动力学模拟[J]. 物理化学学报, 2013, 29(09): 1931 -1936 . |
[9] | 李建昌, 吴隽稚, 周成, 宫兴. 金属-分子-金属结器件研究进展[J]. 物理化学学报, 2013, 29(06): 1123 -1144 . |
[10] | 麦立强, 杨霜, 韩春华, 徐林, 许絮, 皮玉强. 纳米材料的化学锂化与电活性[J]. 物理化学学报, 2011, 27(07): 1551 -1559 . |
[11] | 甘霖, 刘松, 李丹娜, 谷航, 曹阳, 申茜, 王振兴, 王青, 郭雪峰. 简易方法制备交叉碳纳米管-石墨烯异质结[J]. 物理化学学报, 2010, 26(04): 1151 -1156 . |
[12] | 邹斌;李宗良;宋秀能;刘兰峰;王传奎. 电极距离对4,4’-联苯二硫酚分子器件非弹性电子隧穿谱的影响[J]. 物理化学学报, 2007, 23(10): 1577 -1582 . |
[13] | 武晓君;李群祥;黄静;杨金龙. 单分子器件电子输运性质的理论研究[J]. 物理化学学报, 2004, 20(08S): 995 -1002 . |
[14] | 刘天军,吴世康. 偶氮苯光致异构化对紫精-曙洪络合的调控[J]. 物理化学学报, 1996, 12(04): 329 -336 . |
|