物理化学学报 >> 2016, Vol. 32 >> Issue (11): 2731-2736.doi: 10.3866/PKU.WHXB201608232

论文 上一篇    下一篇

SILAR法制备TiO2/CdS/Co-Pi水氧化光阳极及其性能

周丽*(),刘欢欢,杨玉林,强亮生   

  • 收稿日期:2016-05-31 发布日期:2016-11-08
  • 通讯作者: 周丽 E-mail:lizhou@hit.edu.cn
  • 基金资助:
    黑龙江省博士后经费(LBH-Z14106);哈尔滨工业大学理学创新研究发展培育计划(HIT Q201508)

Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode

Li ZHOU*(),Huan-Huan LIU,Yu-Lin YANG,Liang-Sheng QIANG   

  • Received:2016-05-31 Published:2016-11-08
  • Contact: Li ZHOU E-mail:lizhou@hit.edu.cn
  • Supported by:
    the Heilongjiang Postdoctoral Fund, China(LBH-Z14106);Program for Innovation Research of Science in Harbin Institute of Technology, China(HIT Q201508)

摘要:

采用连续离子层吸附法(SILAR)沉积CdS制备type-Ⅱ异质结TiO2/CdS光阳极,用光电化学沉积法在TiO2/CdS表面沉积催化剂(Co-Pi)得到TiO2/CdS/Co-Pi水氧化光阳极。通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)仪等对样品结构及组成进行分析,证明CdS与Co-Pi已成功负载在TiO2表面。用已制备的光阳极在中性溶液中模拟水氧化测试,在较低外偏压(0 V(vs Ag/AgCl))和无电子牺牲剂的情况下,即使在可见光照射下,依然得到较高的初始光电流和稳定光电流,分别为1.3和0.5 mA·cm-2,表明制备的光阳极可以在可见光照下有效地驱动水氧化反应。光电化学池的工作原理为,CdS吸收光子产生光生电子-空穴,TiO2和Co-Pi分别传输电子和空穴,空穴进行水氧化,电子转移到阴极完成质子还原。

关键词: 光催化, 水氧化, 连续离子层吸附及反应, 可见光, TiO2/CdS/Co-Pi光阳极

Abstract:

Asemiconductor heterostructure of TiO2/CdS/cobalt phosphate water oxidation catalyst (Co-Pi WOC) photoanode was fabricated by the successive ionic layer adsorption and reaction (SILAR) procedure and photoassisted electro-deposition. The structure, morphologys and magnetic properties of the resultant particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). CdS and Co-Pi quantum dots loaded on to the TiO2 nanofilm. The TiO2/CdS/Co-Pi photoanode had an initial photocurrent of 1.3 mA·cm-2 and a stable level of 0.5 mA·cm-2. A relatively stable level was maintained under visible light irradiation in neutral solution, especially at the low bias voltage of 0 V (vs Ag/AgCl). In this system, CdS quantum dots serve as the light absorber and generate electron holes; the Co-Pi WOC acts as a hole transfer layer that can transfer the hole for water oxidation; and the TiO2 is the electron conductor for efficient charge transfer to the cathode to actualize proton reduction.

Key words: Photocatalysis, Water oxidation, Successive ionic layer adsorption and reaction, Visible light, TiO2/CdS/Co-Pi photoanode