物理化学学报 >> 2020, Vol. 36 >> Issue (12): 2005038.doi: 10.3866/PKU.WHXB202005038
所属专题: 神经界面
收稿日期:
2020-05-14
录用日期:
2020-06-10
发布日期:
2020-06-15
通讯作者:
封红青,李舟
E-mail:fenghongqing@binn.cas.cn;zli@binn.cas.cn
作者简介:
Dr. Hongqing Feng received her Doctor's Degree in Peking University, Beijing. She is currently working as an associate professor at Beijing Institute of Nanoenergy and Nanosystems, CAS. Her research interest includes anti-bacterial technologies and the biomedical applications of nanogenerators|Prof. Zhou Li received his Ph.D. from Peking University in Department of Biomedical Engineering in 2010. Currently, he is a Professor in Beijing Istitute of Nanoenergy and Nanosystems, CAS. His reaserch interests include nanogenerators, in vivo energy harvesters and self-powered medical devices, biosensors
基金资助:
Yizhu Shan1,2, Hongqing Feng1,2,*(), Zhou Li1,2,*()
Received:
2020-05-14
Accepted:
2020-06-10
Published:
2020-06-15
Contact:
Hongqing Feng,Zhou Li
E-mail:fenghongqing@binn.cas.cn;zli@binn.cas.cn
Supported by:
摘要:
神经系统损伤会扰乱神经系统内的通讯,导致基本神经功能丧失和瘫痪,这不仅给患者本人带来身体和心理上的极大伤害,严重影响患者的生活质量,还会对家庭乃至整个社会造成巨大的经济负担。自20世纪40年代的研究人员发现外源电场(EF)可以诱导神经细胞产生更多的神经突以及引导轴突定向及加速生长之后,电刺激疗法即被纳入神经损伤的治疗研究中来,并在几十年的发展中涌现出很多的优秀成果。本综述讨论了EFs对神经细胞的影响,以及应用EFs进行外周神经(PNS)和中枢神经(CNS)损伤的研究进展。在PNS中,EF能够刺激受损肢体神经的再生和功能恢复。在CNS中,可以使用EF刺激实现轴突再生并恢复患者的行走能力。另外,近年来关于一种新型的电刺激源——纳米发电机的研究进展迅速。纳米发电机是可将机械能直接转换为电能的创新能源器件。将其应用于生物医学领域,可以收集人体运动的机械能并直接输出电刺激,而不再需要外界的电能供应,这有望为电刺激治疗带来重大的创新和变革。本综述概述了近年来纳米发电机在神经系统疾病治疗方面的研究进展和应用实例。
单义珠, 封红青, 李舟. 电刺激治疗神经系统损伤疾病:研究进展与展望[J]. 物理化学学报, 2020, 36(12), 2005038. doi: 10.3866/PKU.WHXB202005038
Yizhu Shan, Hongqing Feng, Zhou Li. Electrical Stimulation for Nervous System Injury: Research Progress and Prospects[J]. Acta Phys. -Chim. Sin. 2020, 36(12), 2005038. doi: 10.3866/PKU.WHXB202005038
Fig 1
(a) Brief description of the method of implanting electrodes directly at the damaged nerve. The confocal images show that the number of motor neurons that pass through the repair site is higher in the energized state than the control group 16. Reprinted with permission from Ref.16, © Society for neuroscience 2002. (b) The method that combines the nerve conduit and electrical stimulation in rats with sciatic nerve injury 20. Reprinted with permission from Ref.20, © John Wiley and Sons 2013. (c) The method of continuous 20 Hz electrical stimulation of the repaired femoral nerve just after microsurgical repair of the transected nerve. Adapted from Ref.27."
Fig 2
(a) Surgical and electrical manipulation of lamprey preparation 33. Reprinted with permission from Ref.33, © The American Association for the Advancement of Science 1981. (b) Brief illustration of the site of the stimulation and record electrodes in guinea pig spinal cord 34. Reprinted with permission from Ref.34, © John Wiley and Sons 2004. (c) The small DC constant current stimulator used in (b) 34. Reprinted with permission from Ref.34, © John Wiley and Sons 2004."
Fig 3
(a) Rats with complete SCI were positioned bipedally over a treadmill belt using an adjustable body weight support system. There also showed the modulation of EES frequency tune foot trajectory during locomotion 40. Reprinted with permission from Ref.40, © The American Association for the Advancement of Science. (b) Optical image of an implant, and scanning electron micrographs of the gold film and the platinum-silicone composite. Cross-section of an e-dura inserted for 6 weeks in the spinal subdural space 42. Reprinted with permission from Ref.42, © The American Association for the Advancement of Science."
1 |
Courtine G. ; Sofroniew M. V. Nat. Med. 2019, 25, 898.
doi: 10.1038/s41591-019-0475-6 |
2 |
Haan N. ; Song B. Adv. Wound Care (New Rochelle) 2014, 3, 156.
doi: 10.1089/wound.2013.0450 |
3 |
Bradbury E. J. ; Khemani S. ; Von R. ; King ; Priestley J. V. ; McMahon S. B. Eur. J. Neurosci. 1999, 11, 3873.
doi: 10.1046/j.1460-9568.1999.00809.x |
4 |
Bregman B. S. ; Kunkel-Bagden E. ; Schnell L. ; Dai H. N. ; Gao D. ; Schwab M. E. Nature 1995, 378, 498.
doi: 10.1038/378498a0 |
5 |
Bradbury E. J. ; Moon L. D. ; Popat R. J. ; King V. R. ; Bennett G. S. ; Patel P. N. ; Fawcett J. W. ; McMahon S. B. Nature 2002, 416, 636.
doi: 10.1038/416636a |
6 |
Lu P. ; Jones L. L. ; Snyder E. Y. ; Tuszynski M. H. Exp. Neurol. 2003, 181, 115.
doi: 10.1016/s0014-4886(03)00037-2 |
7 |
Borgens R. B. ; Jaffe L. F. ; Cohen M. J. Proc. Natl. Acad. Sci. 1980, 77, 4390.
doi: 10.1073/pnas.77.7.4390-c |
8 |
Jenkins L. S. ; Duerstock B. S. ; Borgens R. B. Dev. Biol. 1996, 178, 251.
doi: 10.1006/dbio.1996.0216 |
9 |
Gaudet A. D. ; Popovich P. G. ; Ramer M. S. J. Neuroinflammation 2011, 8, 110.
doi: 10.1186/1742-2094-8-110 |
10 |
Webber C. A. ; Christie K. J. ; Cheng C. ; Martinez J. A. ; Singh B. ; Singh V. ; Thomas D. ; Zochodne D. W. Glia 2011, 59, 1503.
doi: 10.1002/glia.21194 |
11 |
Marsh G. ; Beams H. W. J. Cell Comp. Physiol. 1946, 27, 139.
doi: 10.1002/jcp.1030270303 |
12 |
Jaffe L. F. ; Poo M. M. J. Exp. Zool. 1979, 209, 115.
doi: 10.1002/jez.1402090114 |
13 |
Patel N. ; Poo M. M. J. Neurosci. 1982, 2, 483.
doi: 10.1523/jneurosci.02-04-00483.1982 |
14 |
Hinkle L. ; McCaig C. D. ; Robinson K. R. J. Physiol. 1981, 314, 121.
doi: 10.1113/jphysiol.1981.sp013695 |
15 |
Al-Majed A. A. ; Neumann C. M. ; Brushart T. M. ; Gordon T. Eur. J. Neurosci. 2000, 12, 4381.
doi: 10.1523/jneurosci.20-07-02602.2000 |
16 |
Al-Majed A. A. ; Tam S. L. ; Gordon T. J. C. Cell. Mol. Neurobiol. 2004, 24, 379.
doi: 10.1023/b:cemn.0000022770.66463.f7 |
17 |
Brushart T. M. ; Hoffman P. N. ; Royall R. M. ; Murinson B. B. ; Witzel C. ; Gordon T. J. Neurosci. 2002, 22 (15), 6631.
doi: 10.1523/jneurosci.22-15-06631.2002 |
18 |
Huang J. ; Hu X. ; Lu L. ; Ye Z. ; Wang Y. ; Luo Z. J. Neurotrauma 2009, 26, 1805.
doi: 10.1089/neu.2008-0732 |
19 |
Mendonça A. C. ; Barbieri C. H. ; Mazzer N. J. Neurosci. Methods 2003, 129, 183.
doi: 10.1016/s0165-0270(03)00207-3 |
20 |
Huang J. ; Zhang Y. ; Lu L. ; Hu X. ; Luo Z. Eur. J. Neurosci. 2013, 38, 3691.
doi: 10.1111/ejn.12370 |
21 |
Huang J. ; Lu L. ; Zhang J. ; Hu X. ; Zhang Y. ; Liang W. ; Wu S. ; Luo Z. J. P. O. PLoS One 2012, 7
doi: 10.1371/journal.pone.0039526 |
22 |
Ahlborn P. ; Schachner M. ; Irintchev A. Exp. Neurol. 2007, 208, 137.
doi: 10.1016/j.expneurol.2007.08.005 |
23 |
Gordon T. ; Amirjani N. ; Edwards D. C. ; Chan K. M. Exp. Neurol. 2010, 223, 192.
doi: 10.1016/j.expneurol.2009.09.020 |
24 |
Wong J. N. ; Olson J. L. ; Morhart M. J. ; Chan K. M. Ann. Neurol. 2015, 77, 996.
doi: 10.1002/ana.24397 |
25 |
Singh B. ; Xu Q. G. ; Franz C. K. ; Zhang R. ; Dalton C. ; Gordon T. ; Verge V. M. ; Midha R. ; Zochodne D. W. J. Neurosurg. 2012, 116, 498.
doi: 10.3171/2011.10.JNS11612 |
26 |
Nix W. A. ; Hopf H. C. Brain research 1983, 272, 21.
doi: 10.1016/0006-8993(83)90360-8 |
27 |
Gordon T. ; Chan K. M. ; Sulaiman O. A. ; Udina E. ; Amirjani N. ; Brushart T. M. J. N. Neurosurgery 2009, 65, A132.
doi: 10.1227/01.neu.0000335650.09473.d3 |
28 |
Eberhardt K. A. ; Irintchev A. ; Al-Majed A. A. ; Simova O. ; Brushart T. M. ; Gordon T. ; Schachner M. Exp. Neurol. 2006, 198, 500.
doi: 10.1016/j.expneurol.2005.12.018 |
29 |
Udina E. ; Furey M. ; Busch S. ; Silver J. ; Gordon T. ; Fouad K. Exp. Neurol. 2008, 210, 238.
doi: 10.1016/j.expneurol.2007.11.007 |
30 |
Aglah C. ; Gordon T. ; De Chaves E. P. J. N. Neuropharmacology 2008, 55, 8.
doi: 10.1016/j.neuropharm.2008.04.005 |
31 |
Huang J. ; Ye Z. ; Hu X. ; Lu L. ; Luo Z. J. G. Glia 2010, 58, 622.
doi: 10.1002/glia.20951 |
32 |
Koppes A. ; Zaccor N. ; Rivet C. ; Williams L. ; Piselli J. ; Gilbert R. ; Thompson D. M. J. Neural. Eng. 2014, 11, 046002.
doi: 10.1088/1741-2560/11/4/046002 |
33 |
Borgens R. B. ; Roederer E. ; Cohen M. J. J. S. Science 1981, 213, 611.
doi: 10.1126/science.7256258 |
34 |
Borgens R. B. ; Blight A. R. ; McGinnis M. J. S. Science 1987, 238, 366.
doi: 10.1126/science.3659920 |
35 |
Borgens R. B. ; Blight A. R. ; McGinnis M. E. J. Comp. Neurol. 1990, 296, 634.
doi: 10.1002/cne.902960409 |
36 |
Fehlings M. G. ; Tator C. H. Brain Res. 1992, 579, 32.
doi: 10.1016/0006-8993(92)90738-u |
37 |
Borgens R. B. ; Toombs J. P. ; Blight A. R. ; McGinnis M. E. ; Bauer M. S. ; Widmer W. R. ; Cook Jr. J. R. Restor. Neurol. Neurosci. 1993, 5, 305.
doi: 10.3233/RNN-1993-55601 |
38 |
Shapiro S. ; Borgens R. ; Pascuzzi R. ; Roos K. ; Groff M. ; Purvines S. ; Rodgers R. B. ; Hagy S. ; Nelson P. J. Neurosurg. 2005, 2, 3.
doi: 10.3171/spi.2005.2.1.0003 |
39 |
Gerasimenko Y. P. ; Ichiyama R. M. ; Lavrov I. A. ; Courtine G. ; Cai L. ; Zhong H. ; Roy R. R. ; Edgerton V. R. J. Neurophysiol. 2007, 98, 2525.
doi: 10.1152/jn.00836.2007 |
40 |
Courtine G. ; Gerasimenko Y. ; van den Brand R. ; Yew A. ; Musienko P. ; Zhong H. ; Song B. B. ; Ao Y. ; Ichiyama R. M. ; Lavrov I. ; et al Nat. Neurosci. 2009, 12, 1333.
doi: 10.1038/nn.2401 |
41 |
Wenger N. ; Moraud E. M. ; Raspopovic S. ; Bonizzato M. ; DiGiovanna J. ; Musienko P. ; Morari M. ; Micera S. ; Courtine G. J. Sci. Transl. Med. 2014, 6, 255ra133.
doi: 10.1126/scitranslmed.3008325 |
42 |
Wenger N. ; Moraud E. M. ; Gandar J. ; Musienko P. ; Capogrosso M. ; Baud L. ; Le Goff C. G. ; Barraud Q. ; Pavlova N. ; Dominici N. ; et al Nat. Med. 2016, 22, 138.
doi: 10.1038/nm.4025 |
43 |
Minev I. R. ; Musienko P. ; Hirsch A. ; Barraud Q. ; Wenger N. ; Moraud E. M. ; Gandar J. ; Capogrosso M. ; Milekovic T. ; AsbothL. ; et al Science 2015, 347 (6218), 159.
doi: 10.1126/science.1260318 |
44 |
Angeli C. A. ; Boakye M. ; Morton R. A. ; Vogt J. ; Benton K. ; Chen Y. ; Ferreira C. K. ; Harkema S. J. N. Engl. J. Med. 2018, 379, 1244.
doi: 10.1056/NEJMoa1803588 |
45 |
Gill M. L. ; Grahn P. ; Calvert J. S. ; Linde M. B. ; Lavrov I. A. ; Strommen J. A. ; Beck L. A. ; Sayenko D. G. ; Van Straaten M. G ; Drubach D. I. ; et al Nat. Med. 2018, 24, 1677.
doi: 10.1038/s41591-018-0175-7 |
46 |
Wang Z. L. ; Song J. Science 2006, 312, 242.
doi: 10.1126/science.1124005 |
47 |
Fan F. R. ; Tian Z. Q. ; Wang Z. L. Nano Energy 2012, 1, 328.
doi: 10.1016/j.nanoen.2012.01.004 |
48 |
Ouyang H. ; Tian J. J. ; Sun G. L. ; Zou Y. ; Liu Z. ; Li H. ; Zhao L. M. ; Shi B. J. ; Fan Y. B. ; Fan Y. F. ; et al Adv. Mater. 2017, 29
doi: 10.1002/adma.201703456 |
49 |
Kim S. ; Gupta M. K. ; Lee K. Y. ; Sohn A. ; Kim T. Y. ; Shin K. S. ; Kim D. ; Kim S. K. ; Lee K. H. ; Shin H. J. ; et al Adv. Mater. 2014, 26, 3918.
doi: 10.1002/adma.201400172 |
50 |
Zi Y. ; Lin L. ; Wang J. ; Wang S. ; Chen J. ; Fan X. ; Yang P. K. ; Yi F. ; Wang Z. L. Adv. Mater. 2015, 27, 2340.
doi: 10.1002/adma.201500121 |
51 |
Hu W. T. ; Wei X. L. ; Zhu L. ; Yin D. ; Wei A. M. ; Bi X. Y. ; Liu T. ; Zhou G. M. ; Qiang Y. H. ; Sun X. H. Nano Energy 2019, 57, 600.
doi: 10.1016/j.nanoen.2018.12.077 |
52 |
He C. ; Zhu W. ; Chen B. ; Xu L. ; Jiang T. ; Han C. B. ; Gu G. Q. ; Li D. ; Wang Z. L. ACS Appl. Mater. Interfaces 2017, 9, 26126.
doi: 10.1021/acsami.7b08526 |
53 |
Zheng Q. ; Shi B. ; Fan F. ; Wang X. ; Yan L. ; Yuan W. ; Wang S. ; Liu H. ; Li Z. ; Wang Z. L. Adv. Mater. 2014, 26, 5851.
doi: 10.1002/adma.201402064 |
54 |
Zheng Q. ; Zhang H. ; Shi B. J. ; Xue X. ; Liu Z. ; Jin Y. M. ; Ma Y. ; Zou Y. ; Wang X. X. ; An Z. ; et al ACS Nano 2016, 10, 6510.
doi: 10.1021/acsnano.6b02693 |
55 |
Guo W. ; Zhang X. ; Yu X. ; Wang S. ; Qiu J. ; Tang W. ; Li L. ; Liu H. ; Wang Z. L. ACS Nano 2016, 10, 5086.
doi: 10.1021/acsnano.6b00200 |
56 |
Tang W. ; Tian J. ; Zheng Q. ; Yan L. ; Wang J. ; Li Z. ; Wang Z. L. ACS Nano 2015, 9, 7867.
doi: 10.1021/acsnano.5b03567 |
57 |
Zheng Q. ; Zou Y. ; Zhang Y. ; Liu Z. ; Shi B. ; Wang X. ; Jin Y. ; Ouyang H. ; Li Z. ; Wang Z. L. Sci. Adv. 2016, 2, e1501478.
doi: 10.1126/sciadv.1501478 |
58 |
Mayberg H. S. ; Lozano A. M. ; Voon V. ; McNeely H. E. ; Seminowicz D. ; Hamani C. ; Schwalb J. M. ; Kennedy S. H. Neuron 2005, 45, 651.
doi: 10.1016/j.neuron.2005.02.014 |
59 |
Hwang G. T. ; Kim Y. ; Lee J. H. ; Oh S. ; Jeong C. K. ; Park D. Y. ; Ryu J. ; Kwon H. ; Lee S. G. ; Joung B. ; et al Energy Environ. Sci. 2015, 8, 2677.
doi: 10.1039/c5ee01593f |
60 |
Lee S. ; Wang H. ; Shi Q. ; Dhakar L. ; Wang J. ; Thakor N. V. ; Yen S. C. ; Lee C. Nano Energy 2017, 33, 1.
doi: 10.1016/j.nanoen.2016.12.038 |
61 |
Lee S. ; Wang H. ; Wang J. ; Shi Q. ; Yen S. C. ; Thakor N. V. ; Lee C. Nano Energy 2018, 50, 148.
doi: 10.1016/j.nanoen.2018.04.004 |
62 |
Wang H. ; Wang J. ; He T. ; Li Z. ; Lee C. Nano Energy 2019, 63
doi: 10.1016/j.nanoen.2019.06.040 |
63 | Beker, L.; Zorlu, O.; Goksu, N.; Kulah, H. In Transducers & Eurosensors XXVII, The 17th International Conference on Solid-State Sensors, Barcelona, Spain, June 16-20, 2013; IEEE: Piscataway, 2013; pp. 1663-1666. |
64 |
Chen T. ; Shi Q. ; Zhu M. ; He T. ; Sun L. ; Yang L. ; Lee C. ACS Nano 2018, 12, 11561.
doi: 10.1021/acsnano.8b06747 |
65 |
Yao G. ; Xu L. ; Cheng X. ; Li Y. ; Huang X. ; Guo W. ; Liu S. ; Wang Z. L. ; Wu H. Adv. Funct. Mater. 2020, 30, 1907312.
doi: 10.1002/adfm.201907312 |
66 |
Chen S. ; Pang Y. ; Yuan H. ; Tan X. ; Cao C. Adv. Mater. Technol. 2020, 1901075.
doi: 10.1002/admt.201901075 |
67 |
Shi J. ; Fang Y. Adv. Mater. 2019, 31, e1804895.
doi: 10.1002/adma.201804895 |
68 |
Lacour S. P. ; Courtine G. ; Guck J. Nat. Rev. Mater. 2016, 1
doi: 10.1038/natrevmats.2016.63 |
69 | Xu K ; Wang J. F. Acta Phys. -Chim. Sin. 2020, 36 (12), 2003050. |
许可; 王晋芬. 物理化学学报, 2020, 36 (12), 2003050.
doi: 10.3866/PKU.WHXB202003050 |
|
70 |
Guan S. ; Wang J. ; Gu X. ; Zhao Y. ; Hou R. ; Fan H. ; Zou L. ; Gao L. ; Du M. ; Li C. ; Fang Y. Sci. Adv. 2019, 5, eaav2842.
doi: 10.1126/sciadv.aav2842 |
71 |
Zhang J. ; Liu X. J. ; Xu W. J. ; Luo W. H. ; Li M. ; Chu F. B. ; Xu L. ; Cao A. Y. ; Guan J. S. ; Tang S. M. ; Duan X. J. Nano Lett. 2018, 18, 2903.
doi: 10.1021/acs.nanolett.8b00087 |
[1] | 王璐璐, 谢泽鑫, 钟成, 唐永强, 叶丰明, 王立平, 鲁艺. 用于长期神经电生理记录的自伸展电极阵列[J]. 物理化学学报, 2020, 36(12): 1909035 - . |
[2] | 许可, 王晋芬. 基于一维和二维纳米材料的神经界面构筑[J]. 物理化学学报, 2020, 36(12): 2003050 - . |
[3] | 谢凡, 奚野, 徐庆达, 刘景全. 面向脑机接口的犹他神经电极技术[J]. 物理化学学报, 2020, 36(12): 2003014 - . |
|