物理化学学报 >> 2020, Vol. 36 >> Issue (12): 2003014.doi: 10.3866/PKU.WHXB202003014
所属专题: 神经界面
收稿日期:
2020-03-05
录用日期:
2020-05-11
发布日期:
2020-05-14
通讯作者:
刘景全
E-mail:jqliu@sjtu.edu.cn
作者简介:
刘景全,出生于1971年。本科毕业于吉林工业大学(现吉林大学)。现为上海交通大学教授,博士生导师,主要研究方向:生物医学微机电系统、极端环境微传感器与微执行器、微能源技术
基金资助:
Fan Xie, Ye Xi, Qingda Xu, Jingquan Liu()
Received:
2020-03-05
Accepted:
2020-05-11
Published:
2020-05-14
Contact:
Jingquan Liu
E-mail:jqliu@sjtu.edu.cn
Supported by:
摘要:
脑机接口(Brain-computer interface,BCI),是指在人或动物脑与计算机或其它电子设备之间建立的连接通路,实现了脑与外部设备的直接交互,在认识脑、保护脑和模拟脑方面有着重要的作用,尤其是将来可用于治疗患有神经系统疾病的患者,使他们受损的运动和感知等功能得以恢复。神经电极作为脑机接口的核心部分,是与神经元相互作用的电生理器件,可以用来记录或干预神经活动状态,由美国犹他大学提出的犹他电极阵列(Utah Electrode Array,UEA)是神经电极的一个典型代表。犹他独特的三维针状结构使每个电极具有高时空分辨率的同时相互之间有良好的绝缘,植入后电极尖端只作用于周围一小群神经元,甚至可以记录单个神经元的放电活动。本文主要介绍了UEA的结构、制造工艺流程和功能特点,重点论述其在高密度阵列、无线传输、光电极阵列等方面的研究进展,同时分析了可用于提高电极可靠性的表面修饰方法,并举例说明了UEA的临床应用,最后对未来的发展趋势进行了展望。
谢凡, 奚野, 徐庆达, 刘景全. 面向脑机接口的犹他神经电极技术[J]. 物理化学学报, 2020, 36(12), 2003014. doi: 10.3866/PKU.WHXB202003014
Fan Xie, Ye Xi, Qingda Xu, Jingquan Liu. Utah Neural Electrode Technology for Brain-Computer Interface[J]. Acta Phys. -Chim. Sin. 2020, 36(12), 2003014. doi: 10.3866/PKU.WHXB202003014
表1
改进微电极阵列的方法"
Modifications | Surface features | Neural cell adhesion | Neural cellgrowth/loss | Foreign body response (FBR) | Signal maintenance/MEA longevity | Ref. |
PEDOT | Various different properties | Reduced microglial adhesion | Limited neuronal cell death | Less severe FBR | Enhanced charge storagecapacity and signalmaintenance | |
Nanomaterials/nanostructures | Polypyrrol nanotubes augmented with gold nanoparticles | N/A | No significant cytotoxicity | N/A | Tenfold decreasein electrochemicalimpedance | |
Carbon nanotubules | N/A | No significant cytotoxicity | N/A | Decreased impedanceand increased capacitance | ||
PEDOT/CNT | Stable cell adhesion | Stable cell growth | N/A | Decreased impedance and increased capacitance | ||
Natural ECM | Vary depending on ECM coating type | Stable cell adhesion | Limited neuronal celldeath | Limited FBR | N/A | |
Neuro adhesive L1 | Neuronal adhesion molecule | 83% reduction in microglial adhesion; good neuronal adhesion | Good neuroblast growth; limited neuronal cell death | Reduction in overall gliosis | N/A | |
Silica sol-gel | Smooth to rough texture, depending on composition | Good neuronal cell adhesion | Limited astrocyte growth | Limited FBR | N/A |
1 |
Nair P. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 18343.
doi: 10.1073/pnas.1319310110 |
2 |
Fetz E. E. Prog. Brain Res 2015, 218, 241.
doi: 10.1016/bs.pbr.2015.01.001 |
3 |
Hochberg L. R. ; Serruya M. D. ; Friehs G. M. ; Mukand J. A. ; Saleh M. ; Caplan A. H. ; Branner A. ; Chen D. ; Penn R. D. ; Donoghue J. P. Nature 2006, 442, 164.
doi: 10.1038/nature04970 |
4 |
Hochberg L. R. ; Bacher D. ; Jarosiewicz B. ; Masse N. Y. ; Simeral J. D. ; Vogel J. ; Haddadin S. ; Liu J. ; Cash S. S. ; van der Smagt P. ; et al Nature 2012, 485, 372.
doi: 10.1038/nature11076 |
5 |
Deuschl G. ; Schade-Brittinger C. ; Krack P. ; Volkmann J. ; Schäfer H. ; Bötzel K. ; Daniels C. ; Deutschländer A. ; Dillmann U. ; Eisner W. ; et al N. Engl. J. Med. 2006, 355, 896.
doi: 10.1056/NEJMoa060281 |
6 |
Boon P. ; Vonck K. ; De Herdt V. ; Van Dycke A. ; Goethals M. ; Goossens L. ; Van Zandijcke M. ; De Smedt T. ; Dewaele I. ; Achten R. ; et al Epilepsia 2007, 48, 1551.
doi: 10.1111/j.1528-1167.2007.01005.x |
7 |
Nicolelis M. A. L. ; Ghazanfar A. A. ; Faggin B. M. ; Votaw S. ; Oliveira L. M. O. Neuron 1997, 18, 529.
doi: 10.1016/S0896-6273(00)80295-0 |
8 |
Nicolelis M. A. L. ; Dimitrov D. ; Carmena J. M. ; Crist R. ; Lehew G. ; Kralik J. D. ; Wise S. P. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 11041.
doi: 10.1073/pnas.1934665100 |
9 |
Wise K. D. ; Najafi K. Science 1991, 254, 1335.
doi: 10.1126/science.1962192 |
10 |
Daryl R. K. ; Rio J. V. ; Justin C. W. ; Jamille F. H. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 151.
doi: 10.1109/TNSRE.2003.814443 |
11 |
Wise K. D. ; Sodagar A. M. ; Yao Y. ; Gulari M. N. ; Perlin G. E. ; Najafi K. Proc. IEEE 2008, 96, 1184.
doi: 10.1109/JPROC.2008.922564 |
12 | Normann, R. A.; Campbell, P. K.; Jones, K. E. A silicon-based, Three-dimensional neural Interface: Manufacturing Processes for an Intracortical Electrode array. In: Images of the Twenty-First Century, Proceedings of the Annual International Engineering in Medicine and Biology Society, Seattle, WA, USA, 1989; pp. 939-940. |
13 |
Campbell P. K. ; Jones K. E. ; Huber R. J. ; Horch K. W. ; Normann R. A. IEEE Trans. Biomed. Eng. 1991, 38, 758.
doi: 10.1109/10.83588 |
14 |
Normann R. A. Nat. Clin. Pract. Neurol 2007, 3, 444.
doi: 10.1038/ncpneuro0556 |
15 |
Bhandari R. ; Negi S. ; Solzbacher F. Biomed. Microdevices 2010, 12, 797.
doi: 10.1007/s10544-010-9434-1 |
16 |
Branner A. ; Normann R. A. Brain Res. Bull 2000, 51, 293.
doi: 10.1016/S0361-9230(99)00231-2 |
17 |
Branner A. ; Stein R. B. ; Normann R. A. J. Neurophysiol 2001, 85, 1585.
doi: 10.1152/jn.2001.85.4.1585 |
18 |
Bhandari R. ; Negi S. ; Rieth L. ; Normann R. A. ; Solzbacher F. Sens. Actuator A-Phys 2008, 145, 123.
doi: 10.1016/j.sna.2007.10.072 |
19 |
Buzsáki G. Nat. Neurosci 2004, 7, 446.
doi: 10.1038/nn1233 |
20 |
House P. A. ; Macdonald J. D. ; Tresco P. A. ; Normann R. A. Neurosurg. Focus 2006, 20, 1.
doi: 10.3171/foc.2006.20.5.5 |
21 |
Biran R. ; Martin D. C. ; Tresco P. A. J. Biomed. Mater. Res. Part A 2007, 82, 169.
doi: 10.1002/jbm.a.31138 |
22 |
Christensen M. B. ; Pearce S. M. ; Ledbetter N. M. ; Warren D. J. ; Clark G. A. ; Tresco P. A. Acta Biomater 2014, 10, 4650.
doi: 10.1016/j.actbio.2014.07.010 |
23 | Pei W. H. Sci. Technol. Rev 2018, 36, 77. |
裴为华.. 科技导报, 2018, 36, 77.
doi: 10.3981/j.issn.1000-7857.2018.06.009 |
|
24 | Wei C. R. ; Pei W. H. Chin. J. Anal. Chem 2019, 47, 1455. |
魏春蓉.; 裴为华.. 分析化学, 2019, 47, 1455.
doi: 10.19756/j.issn.0253-3820.191430 |
|
25 | Shandhi, M. M. H.; Leber, M.; Hogan, A.; Bhandari, R.; Negi, S. A Novel Method of Fabricating Hhigh Channel Density Neural Array for Large Neuronal Mapping. In: Transducers, Anchorage, Alaska, USA, June 21-25, 2015; IEEE: New York, 2015. |
26 |
Wark H. A. C. ; Sharma R. ; Mathews K. S. ; Fernandez E. ; Yoo J. ; Christensen B. ; Tresco P. ; Rieth L. ; Solzbacher F. ; Normann R. A. ; et al J. Neural Eng. 2013, 10, 45003.
doi: 10.1088/1741-2560/10/4/045003 |
27 |
Mathews K. S. ; Wark H. A. C. ; Normann R. A. Muscle Nerve 2014, 50, 417.
doi: 10.1002/mus.24171 |
28 |
Fujishiro A. ; Kaneko H. ; Kawashima T. ; Ishida M. ; Kawano T. Sci. Rep 2014, 4, 1.
doi: 10.1038/srep04868 |
29 |
Kim S. ; Bhandari R. ; Klein M. ; Negi S. ; Rieth L. ; Tathireddy P. ; Toepper M. ; Oppermann H. ; Solzbacher F. Biomed. Microdevices 2009, 11, 453.
doi: 10.1007/s10544-008-9251-y |
30 |
Yin M. ; Borton D. A. ; Komar J. ; Agha N. ; Lu Y. ; Li H. ; Laurens J. ; Lang Y. ; Li Q. ; Bull C. ; et al Neuron 2014, 84, 1170.
doi: 10.1016/j.neuron.2014.11.010 |
31 |
Sharma A. ; Rieth L. ; Tathireddy P. ; Harrison R. ; Oppermann H. ; Klein M. ; Töpper M. ; Jung E. ; Normann R. ; Clark G. ; et al J. Neural Eng 2011, 8, 45004.
doi: 10.1088/1741-2560/8/4/045004 |
32 |
Deisseroth K. Nat. Methods 2010, 8, 26.
doi: 10.1038/NMETH.F.324 |
33 |
Boyden E. S. ; Zhang F. ; Bamberg E. ; Nagel G. ; Deisseroth K. Nat. Neurosci 2005, 8, 1263.
doi: 10.1038/nn1525 |
34 |
Han X. ; Qian X. ; Bernstein J. G. ; Zhou H. ; Franzesi G. T. ; Stern P. ; Bronson R. T. ; Graybiel A. M. ; Desimone R. ; Boyden E. S. Neuron 2009, 62, 191.
doi: 10.1016/j.neuron.2009.03.011 |
35 |
Goncalves S. B. ; Ribeiro J. F. ; Silva A. F. ; Costa R. M. ; Correia J. H. J. Neural Eng 2017, 14, 41001.
doi: 10.1088/1741-2552/aa7004 |
36 |
Abaya T. V F. ; Blair S. ; Tathireddy P. ; Rieth L. ; Solzbacher F. Biomed. Opt. Express 2012, 3, 3087.
doi: 10.1364/BOE.3.003087 |
37 |
Abaya T. V. F. ; Diwekar M. ; Blair S. ; Tathireddy P. ; Rieth L. ; Solzbacher F. J. Biomed. Opt. 2014, 19, 15006.
doi: 10.1117/1.JBO.19.1.015006 |
38 | Scharf, R.; Reiche, C. F.; Mcalinden, N.; Cheng, Y.; Xie, E.; Sharma, R.; Tathireddy, P.; Rieth, L.; Mathieson, K.; Blair, S. A Compact Integrated Device for Spatially Selective Optogenetic Neural Stimulation Based on the Utah Optrode Array. In Proceedings of SPIE, Conference on Optogenetics and Optical Manipulation, San Francisco, CA, January 27-28, 2018; Mohanty, S. K.; Thakor, N. V.; Jansen, E. D., Eds.; SPIE: Bellingham, 2018. |
39 |
Fofonoff T. A. ; Martel S. M. ; Hatsopoulos N. G. ; Donoghue J. P. ; Hunter I. W. Ieee T Bio-Med Eng 2004, 51, 890.
doi: 10.1109/TBME.2004.826679 |
40 |
Goncalves S. B. ; Peixoto A. C. ; Rodrigues J. A. ; Silva A. F. ; Correia J. H. Procedia Eng. 2014, 87, 939.
doi: 10.1016/j.proeng.2014.11.311 |
41 | Li, J.; Huang, D.; Chen, Y.; Li, Z. Low-Cost, Metal-Based Micro-Needle Electrode Array (M-MNEA): A Three-Dimensional Intracortical Neural Interface. In Transducers, Berlin, GERMANY, June 23-27, 2019; IEEE: Piscataway, 2019. |
42 |
Barrese J. C. ; Rao N. ; Paroo K. ; Triebwasser C. ; Vargas-Irwin C. ; Franquemont L. ; Donoghue J. P. J. Neural Eng 2013, 10, 66014.
doi: 10.1088/1741-2560/10/6/066014 |
43 |
Prasad A. ; Xue Q. ; Dieme R. ; Sankar V. ; Mayrand R. C. ; Nishida T. ; Streit W. J. ; Sanchez J. C. Front. Neuroeng. 2014, 7, 2.
doi: 10.3389/fneng.2014.00002 |
44 |
Kozai T. D. Y. ; Catt K. ; Li X. ; Gugel Z. V. ; Olafsson V. T. ; Vazquez A. L. ; Cui X. T. Biomaterials 2015, 37, 25.
doi: 10.1016/j.biomaterials.2014.10.040 |
45 |
Ferguson M. ; Sharma D. ; Ross D. ; Zhao F. Adv. Healthc. Mater 2019, 8, 1900558.
doi: 10.1002/adhm.201900558 |
46 |
Fernã Ndez E. ; Greger B. ; House P. A. ; Aranda I. ; Botella C. ; Albisua J. ; Soto-Sã Nchez C. ; Alfaro A. ; Normann R. A. Front. Neuroeng. 2014, 7, 24.
doi: 10.3389/fneng.2014.00024 |
47 |
Rui Y. ; Liu J. ; Wang Y. ; Yang C. Microsyst. Technol. 2011, 17, 437.
doi: 10.1007/s00542-011-1279-x |
48 |
Heim M. ; Yvert B. ; Kuhn A. J. Physiol.-Paris 2012, 106, 137.
doi: 10.1016/j.jphysparis.2011.10.001 |
49 |
Boehler C. ; Stieglitz T. ; Asplund M. Biomaterials 2015, 67, 346.
doi: 10.1016/j.biomaterials.2015.07.036 |
50 |
Negi S. ; Bhandari R. ; Rieth L. ; Solzbacher F. Biomed. Mater 2010, 5, 15007.
doi: 10.1088/1748-6041/5/1/015007 |
51 |
Cogan S. F. ; Ehrlich J. ; Plante T. D. ; Smirnov A. ; Shire D. B. ; Gingerich M. ; Rizzo J. F. J. Biomed. Mater. Res. Part B 2009, 89, 353.
doi: 10.1002/jbm.b.31223 |
52 |
Slavcheva E. ; Vitushinsky R. ; Mokwa W. ; Schnakenberg U. J. Electrochem. Soc 2004, 151, E226.
doi: 10.1149/1.1747881 |
53 |
Cui X. ; Lee V. A. ; Raphael Y. ; Wiler J. A. ; Hetke J. F. ; Anderson D. J. ; Martin D. C. J. Biomed. Mater. Res. 2001, 56, 261.
doi: 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I |
54 |
Cui X. ; Martin D. C. Sens. Actuator B-Chem. 2003, 89, 92.
doi: 10.1016/s0925-4005(02)00448-3 |
55 |
Du Z. J. ; Luo X. ; Weaver C. L. ; Cui X. T. J. Mater. Chem. C 2015, 3, 6515.
doi: 10.1039/C5TC00145E |
56 |
Wang L. ; Wang M. ; Ge C. ; Ji B. ; Guo Z. ; Wang X. ; Yang B. ; Li C. ; Liu J. Biosens. Bioelectron. 2019, 145, 111661.
doi: 10.1016/j.bios.2019.111661 |
57 |
Wang M. ; Ji B. ; Gu X. ; Tian C. ; Kang X. ; Yang B. ; Wang X. ; Chen X. ; Li C. ; Liu J. Biosens. Bioelectron. 2017, 99, 99.
doi: 10.1016/j.bios.2017.07.030 |
58 |
Kojabad Z. D. ; Shojaosadati S. A. ; Firoozabadi S. M. ; Hamedi S. J. Solid State Electrochem 2019, 23, 1533.
doi: 10.1007/s10008-019-04245-1 |
59 |
Abidian M. R. ; Corey J. M. ; Kipke D. R. ; Martin D. C. Small 2010, 6, 421.
doi: 10.1002/smll.200901868 |
60 |
Keefer E.W. ; Botterman B. R. ; Romero M. I. ; Rossi A.F. ; Gross G. W. Nat. Nanotechnol. 2008, 3, 434.
doi: 10.1038/nnano.2008.174 |
61 |
Burblies N. ; Schulze J. ; Schwarz H. ; Kranz K. ; Motz D. ; Vogt C. ; Lenarz T. ; Warnecke A. ; Behrens P. Plos One 2016, 11, e158571.
doi: 10.1371/journal.pone.0158571 |
62 |
Cogan S. F. Annu. Rev. Biomed. Eng. 2008, 10, 275.
doi: 10.1146/annurev.bioeng.10.061807.160518 |
63 |
Luo X. ; Weaver C. L. ; Zhou D. D. ; Greenberg R. ; Cui X. T. Biomaterials 2011, 32, 5551.
doi: 10.1016/j.biomaterials.2011.04.051 |
64 | Dee K. C. ; Puleo D. A. ; Bizis R. An Introduction to Tissue-Biomaterial Interactions, 1st ed. John Wiley & Sons: NJ, 2002, pp 15- 35. |
65 |
Lok J. ; Leung W. ; Murphy S. ; Butler W. ; Noviski N. ; Lo E. H. Acta Neurochir. 2011, 111, 63.
doi: 10.1007/978-3-7091-0693-8_11 |
66 |
Ceyssens F. ; Deprez M. ; Turner N. ; Kil D. ; van Kuyck K. ; Welkenhuysen M. ; Nuttin B. ; Badylak S. ; Puers R. J. Neural Eng 2017, 14, 14001.
doi: 10.1088/1741-2552/14/1/014001 |
67 |
Azemi E. ; Lagenaur C. F. ; Cui X. T. Biomaterials 2011, 32, 681.
doi: 10.1016/j.biomaterials.2010.09.033 |
68 |
Eles J. R. ; Vazquez A. L. ; Snyder N. R. ; Lagenaur C. ; Murphy M. C. ; Kozai T. D. Y. ; Cui X. T. Biomaterials 2017, 113, 279.
doi: 10.1016/j.biomaterials.2016.10.054 |
69 |
Kolarcik C. L. ; Bourbeau D. ; Azemi E. ; Rost E. ; Zhang L. ; Lagenaur C. F. ; Weber D. J. ; Cui X. T. Acta Biomater 2012, 8, 3561.
doi: 10.1016/j.actbio.2012.06.034 |
70 |
Capeletti L. B. ; Cardoso M. B. ; Dos Santos J. H. Z. ; He W. ACS Appl. Mater. Interfaces 2016, 8, 27553.
doi: 10.1021/acsami.6b09393 |
71 |
Lago N. ; Ceballos D. ; J Rodrı́guez F. ; Stieglitz T. ; Navarro X. Biomaterials 2005, 26, 2021.
doi: 10.1016/j.biomaterials.2004.06.025 |
72 |
Loeb G. E. ; Bak M. J. ; Salcman M. ; Schmidt E. M. IEEE Trans. Biomed. Eng. 1977, BME-24, 121.
doi: 10.1109/TBME.1977.326115 |
73 |
Hsu J. ; Rieth L. ; Normann R. A. ; Tathireddy P. ; Solzbacher F. IEEE Trans. Biomed. Eng. 2009, 56, 23.
doi: 10.1109/TBME.2008.2002155 |
74 |
Wu J. ; Pike R. T. ; Wong C. P. ; Kim N. P. ; Tanielian M. H. IEEE Trans. Adv. Packag. 2000, 23, 721.
doi: 10.1109/6040.883764 |
75 |
Hsu J. ; Tathireddy P. ; Rieth L. ; Normann A. R. ; Solzbacher F. Thin Solid Films 2007, 516, 34.
doi: 10.1016/j.tsf.2007.04.050 |
76 |
Cogan S. F. ; Edell D. J. ; Guzelian A. A. ; Ying P. L. ; Edell R. J. Biomed. Mater. Res. Part A 2003, 67A, 856.
doi: 10.1002/jbm.a.10152 |
77 |
Roy R. K. ; Lee K. J. Biomed. Mater. Res. Part B 2007, 83, 72.
doi: 10.1002/jbm.b.30768 |
78 |
Winslow B. D. ; Christensen M. B. ; Yang W. ; Solzbacher F. ; Tresco P. A. Biomaterials 2010, 31, 9163.
doi: 10.1016/j.biomaterials.2010.05.050 |
79 |
Wang R. ; Zhao W. ; Wang W. ; Li Z. J. Microelectromech. Syst. 2012, 21, 1084.
doi: 10.1109/JMEMS.2012.2203790 |
80 |
Xie X. ; Rieth L. ; Williams L. ; Negi S. ; Bhandari R. ; Caldwell R. ; Sharma R. ; Tathireddy P. ; Solzbacher F. J. Neural Eng 2014, 11, 26016.
doi: 10.1088/1741-2560/11/2/026016 |
81 |
Joshi-Imre A. ; Black B. J. ; Abbott J. ; Kanneganti A. ; Rihani R. ; Chakraborty B. ; Danda V. R. ; Maeng J. ; Sharma R. ; Rieth L. ; et al J. Neural Eng 2019, 16, 46006.
doi: 10.1088/1741-2552/ab1bc8 |
82 |
Castellini C. ; Artemiadis P. ; Wininger M. ; Ajoudani A. ; Alimusaj M. ; Bicchi A. ; Caputo B. ; Craelius W. ; Dosen S. ; Englehart K. ; et al Front. Neurorobotics 2014, 8, 1.
doi: 10.3389/fnbot.2014.00022 |
83 |
Raspopovic S. ; Capogrosso M. ; Petrini F. M. ; Bonizzato M. ; Rigosa J. ; Di Pino G. ; Carpaneto J. ; Controzzi M. ; Boretius T. ; Fernandez E. ; et al Sci. Transl. Med 2014, 6, 219r.
doi: 10.1126/scitranslmed.3006820 |
84 |
Andersen R. A. ; Hwang E. J. ; Mulliken G. H. Annu. Rev. Psychol. 2010, 61, 169.
doi: 10.1146/annurev.psych.093008.100503 |
85 |
Collinger J. L. ; Wodlinger B. ; Downey J. E. ; Wang W. ; Tyler-Kabara E. C. ; Weber D. J. ; Mcmorland A. J. ; Velliste M. ; Boninger M. L. ; Schwartz A. B. The Lancet 2013, 381, 557.
doi: 10.1016/S0140-6736(12)61816-9 |
86 | Boninger, M. L.; Collinger, J. L.; Weber, D. Brain-Computer Interfaces: Success from the University of Pittsburgh. In EDX and NM Medicine: Looking to the Future as We Address Today's Challenges, AANEM 60th Annual Meeting, San Antonio, Texas, October 2013; Kuiken, T. K., Boninger, M. L., Byrne, B. J., Eds.; 11-13. |
87 |
Wodlinger B. ; Downey J. E. ; Tyler-Kabara E. C. ; Schwartz A. B. ; Boninger M. L. ; Collinger J. L. J. Neural Eng 2015, 12, 016011.
doi: 10.1088/1741-2560/12/1/016011 |
88 |
Simeral J. D. ; Kim S. -P. ; Black M. J. ; Donoghue J. P. ; Hochberg L. R. J. Neural Eng 2010, 8, 025027.
doi: 10.1088/1741-2560/8/2/025027 |
89 |
Gilja V. ; Pandarinath C. ; Blabe C. H. ; Nuyujukian P. ; Simeral J. D. ; Sarma A. A. ; Sorice B. L. ; Perge J. A. ; Jarosiewicz B. ; Hochberg L. R. ; et al Nat. Med 2015, 21, 1142.
doi: 10.1038/nm.3953 |
90 | https://zj.zjol.com.cn/news.html?id=1366170&from=timeline&isappinstalled=0 (accessed Mar 23, 2020). |
91 | Guger C. ; Allison B. ; Lebedev M. Brain-Computer Interface Research Cham: Springer, 2017, pp. 43- 54. |
92 |
Branner A. ; Stein R. B. ; Fernandez E. ; Aoyagi Y. ; Normann R. A. IEEE Trans. Biomed. Eng. 2004, 51, 146.
doi: 10.1109/TBME.2003.820321 |
93 |
Wendelken S. ; Page D. M. ; Davis T. ; Wark H. A. C. ; Kluger D. T. ; Duncan C. ; Warren D. J. ; Hutchinson D. T. ; Clark G. A. J. Neuroeng. Rehabil 2017, 14, 121.
doi: 10.1186/s12984-017-0320-4 |
94 | Clark, G. A.; Wendelken, S.; Page, D. M.; Davis, T.; Wark, H. A.; Normann, R. A.; Warren, D. J.; Hutchinson, D. T. Using Multiple High-Count Electrode Arrays in Human Median and Ulnar Nerves to Restore Sensorimotor Function after Previous Transradial Amputation of the Hand. In IEEE Engineering in Medicine and Biology Society Conference Proceedings, EMBC, Chicago, IL, August 26-30, 2014; IEEE: New York, 2014. |
95 |
Davis T. S. ; Wark H. A. C. ; Hutchinson D. T. ; Warren D. J. ; Scheinblum T. ; Clark G. A. ; Normann R. A. ; Greger B. J. Neural Eng 2016, 13, 036001.
doi: 10.1088/1741-2560/13/3/036001 |
96 | Pan, J. W. Largr-scale Neural Ensemble Recording System for Rats. M. S. Dissertation, East China Normal University, Shanghai, 2008. |
潘璟玮.大鼠多通道在体记录系统构建与应用[D].上海:华东师范大学, 2008. | |
97 |
Suner S. ; Fellows M. R. ; Vargas-Irwin C. ; Nakata G. K. ; Donoghue J. P. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 524.
doi: 10.1109/TNSRE.2005.857687 |
98 |
Lago N. ; Cester A. Appl. Sci.-Base. 2017, 7, 1292.
doi: 10.3390/app7121292 |
[1] | 卢尔君, 陶俊乾, 阳灿, 侯乙东, 张金水, 王心晨, 付贤智. 碳包覆Pd/TiO2光催化产氢协同胺类选择性氧化合成亚胺[J]. 物理化学学报, 2023, 39(4): 2211029 -0 . |
[2] | 孙轲, 赵永青, 殷杰, 靳晶, 刘翰文, 席聘贤. 有机配体表面改性NiCo2O4纳米线用于水全分解[J]. 物理化学学报, 2022, 38(6): 2107005 - . |
[3] | 姜美慧, 盛利志, 王超, 江丽丽, 范壮军. 超级电容器用石墨烯薄膜:制备、基元结构及表面调控[J]. 物理化学学报, 2022, 38(2): 2012085 - . |
[4] | 王璐璐, 谢泽鑫, 钟成, 唐永强, 叶丰明, 王立平, 鲁艺. 用于长期神经电生理记录的自伸展电极阵列[J]. 物理化学学报, 2020, 36(12): 1909035 - . |
[5] | 许可, 王晋芬. 基于一维和二维纳米材料的神经界面构筑[J]. 物理化学学报, 2020, 36(12): 2003050 - . |
[6] | 单义珠, 封红青, 李舟. 电刺激治疗神经系统损伤疾病:研究进展与展望[J]. 物理化学学报, 2020, 36(12): 2005038 - . |
[7] | 郭锦成,林燕芬,田娜,孙世刚. Ru修饰Pd二十四面体纳米晶的合成及其甲醇电催化氧化性能[J]. 物理化学学报, 2019, 35(7): 749 -754 . |
[8] | 相欣然,万晓梅,索红波,胡燚. 功能化离子液体修饰多壁碳纳米管固定化Candida antarctic lipase B[J]. 物理化学学报, 2018, 34(1): 99 -107 . |
[9] | 高琪,阚彩侠,李俊龙,楼叶珂,魏菁菁. 铜纳米线的液相制备及其表面修饰研究进展[J]. 物理化学学报, 2016, 32(7): 1604 -1622 . |
[10] | 卫会云,王国帅,吴会觉,罗艳红,李冬梅,孟庆波. 量子点敏化太阳能电池研究进展[J]. 物理化学学报, 2016, 32(1): 201 -213 . |
[11] | 龚金华,王臣辉,卞子君,阳立,胡军,刘洪来. 多孔材料表面修饰聚酰亚胺非对称混合基质膜对CO2/N2和CO2/CH4的气体分离[J]. 物理化学学报, 2015, 31(10): 1963 -1970 . |
[12] | 王新环, 韩秋森, 李婧影, 杨蓉, 刁国旺, 王琛. 无种子法纳米金棒的制备及其对肿瘤细胞光热治疗效应研究[J]. 物理化学学报, 2014, 30(7): 1363 -1369 . |
[13] | 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏. 利用表面修饰调制GaAs纳米线的电子结构[J]. 物理化学学报, 2014, 30(10): 1841 -1846 . |
[14] | 杨汉培, 张颖超, 傅小飞, 宋双双, 吴俊明. CNTs表面改性与TiO2-CNTs异质结光催化性能[J]. 物理化学学报, 2013, 29(06): 1327 -1335 . |
[15] | 杨自嵘, 韩玉琦, 王芳, 刘倩, 张扬, 敏世雄. 表面Cu2O纳米颗粒修饰高效促进γ-Bi2MoO6的可见光催化活性[J]. 物理化学学报, 2013, 29(04): 813 -820 . |
|