物理化学学报 >> 2022, Vol. 38 >> Issue (6): 2103052.doi: 10.3866/PKU.WHXB202103052
所属专题: 面向电化学储能与转化的表界面工程
朱思颖1, 李辉阳1, 胡忠利1, 张桥保2,*(), 赵金保1, 张力1,*(
)
收稿日期:
2021-03-24
录用日期:
2021-04-25
发布日期:
2021-04-29
通讯作者:
张桥保,张力
E-mail:zhangqiaobao@xmu.edu.cn;zhangli81@xmu.edu.cn
作者简介:
张桥保,厦门大学材料学院副教授。2016获香港城市大学博士学位,2015年在佐治亚理工学院刘美林教授课题组访学,2016年至今在厦门大学工作。主要研究兴趣是二次电池关键电极材料的设计优化及其储能过程中的构效关系解析。基金资助:
Siying Zhu1, Huiyang Li1, Zhongli Hu1, Qiaobao Zhang2,*(), Jinbao Zhao1, Li Zhang1,*(
)
Received:
2021-03-24
Accepted:
2021-04-25
Published:
2021-04-29
Contact:
Qiaobao Zhang,Li Zhang
E-mail:zhangqiaobao@xmu.edu.cn;zhangli81@xmu.edu.cn
About author:
Li Zhang, Email: zhangli81@xmu.edu.cn (L.Z.)Supported by:
摘要:
氧化亚硅(SiO)作为锂离子电池负极材料,具有较高的理论比容量(~2043 mAh·g-1)以及合适的脱锂电位(< 0.5 V),且原料储量丰富、制备成本较低、对环境友好,被认为是下一代高能量密度锂离子电池负极极具潜力的候选材料。然而,SiO在脱/嵌锂过程中存在着较严重的体积效应(~200%),易导致材料颗粒粉化、脱落,严重影响了SiO负极电极的界面稳定性和电化学性能。近年来,人们围绕SiO负极结构优化和界面改性开展了大量工作。本文先从SiO负极材料的结构特点出发,阐述了该材料面临的主要瓶颈问题;继而从SiO的结构优化、SiO/碳复合和SiO/金属复合等三方面,系统总结了迄今已有的SiO负极结构设计和界面调控策略,并分别对其方法特点、电化学性能以及二者间关联规律进行了比较和归纳,最后对SiO负极材料结构和界面改性的未来发展方向进行了展望。
朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 2103052.
Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052.
表1
尺寸缩减改性后的SiO材料性能"
Sample | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Year | Ref. |
SiO/Graphite | 951.1/770.4 | 81 | 762.0 (50 cycles) | 0.1C | – | 2007 | 38 |
SiO/C | 1050/800 | 76 | 710 (100 cycles) | – | 0.5–3 μm | 2007 | 40 |
SiO/Graphite | 1556/693 | 44.5 | 688 (30 cycles) | – | 5–20 μm | 2008 | 41 |
SiO/CNF | 2027/724 | 35.7 | 675 (200 cycles) | 0.1C | 0.1–1 μm | 2011 | 42 |
SiO | 1779/1002 | 56.3 | 1000 (50 cycles) | 100 mA·g-1 | < 10 μm | 2013 | 39 |
F-doped SiO@C | 1518/1050 | 70 | 975 (100 cycles) | 400 mA·g-1 | 2018 | 44 |
表2
多孔化改性后的SiO材料性能"
Sample | Initial discharge/charge specific capacity/(mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Pore size | Year | Ref. |
p-SiO | 2250/1350 | 60 | – | 0.1C | – | – | 2012 | 46 |
p-SiO@C | 1990/1520 | 76.4 | 1490 (50 cycles) | 0.1C | – | – | 2013 | 47 |
p-SiO | 2653/1709 | 64.4 | 1242 (100 cycles) | 0.2C | < 20 μm | 75.2 nm | 2013 | 48 |
mp-SiO@N-doped C | 1202/790 | 65.7 | 806 (250 cycles) | 400 mA·g-1 | < 400 nm | v | 2018 | 49 |
p-SiO@C | – | 87 | 839.6 (110 cycles) | 500 mA·g-1 | ~60 μm | 6.67 nm | 2020 | 50 |
p-SiO@C | ~1600/~1000 | 62 | 900 (200 cycles) | 1000 mA·g-1 | – | 2–15 nm | 2020 | 51 |
表3
湿法碳包覆改性SiO材料的电化学性能"
Sample | Carbon precursor | Synthesis method | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling Performance (mAh·g-1) | Current density | Particle size | Coating thickness | Conductive property | Year | Ref. |
NC-SiO | EMI-DCA ion liquid | High-temperature carbonization | 2024/1496 | 73.9 | 955 (100 cycles) | 1C | – | 20–30 nm | – | 2013 | 70 |
SCG-5 | Aniline, Graphite | In situ polymerization, Annealing | 801/545 | 68 | 432 (500 cycles) | 0.8C | 1–10 μm | – | – | 2017 | 64 |
SiO@C | Sodium dodecyl benzene sulfonate | Electrostatic force adsorption, Calcination | 2205/1142 | 51.8 | 1085 (100 cycles) | 0.1C | 6 μm | 7 nm | R = 329 Ω·sq-1 | 2018 | 66 |
TC-SiO | Tetrabutyl titanate, Coal tar pitch | Calcination | 1741/1252 | 71.9 | 674.5 (100 cycles) | 0.14 A·g-1 | 5–10 μm | 4 nm | Rct = 31.3 Ω | 2018 | 65 |
SiO/NC | Melamine, Citric acid | Magnetic stirring, Sinter | 1280/920 | 71 | 834 (150 cycles) | 1000 mA·g-1 | – | 15–20 nm | Rct = 64.28 Ω | 2019 | 68 |
SiO/NPC | Melamine, Phosphoric acid, Gelatin | Magnetic stirring, Sinter | 1698/1223 | 72 | 847 (200 cycles) | 1000 mA·g-1 | – | 25–30 nm | Rct = 33 Ω | 2020 | 71 |
SiO/C | Glucose | Ball-milling, Calcination | 1751/1259 | 71.9 | 850 (100 cycles) | 200 mA·g-1 | – | – | – | 2020 | 72 |
SiO/C/G | Asphalt, Graphite | Ball-milling, Spray drying, Pyrolysis | 1509/963 | 63.8 | 950 (100 cycles) | 100 mA·g-1 | 15 μm | ~10 nm | – | 2020 | 73 |
SC-3 | Bamboo charcoal | Ball-milling, Calcination, Aluminothermic reduction | 2308/1260 | 56.3 | 1100 (300 cycles) | 200 mA·g-1 | – | – | – | 2020 | 74 |
表4
干法碳包覆改性SiO材料的电化学性能"
Sample | Carbon precursor | Synthesis method | Initial discharge/ charge specific capacity (mAh·g-1) | ICE(%) | Cycling performance (mAh·g-1) | Current density | Particle size | Coating thickness | Conductive property | Year | Ref. |
d-SiO@vG | CH4 | CVD | – | – | 1600 (100 cycles) | – | – | – | R = 200 Ω·sq-1 | 2017 | 75 |
SiO/CNT/C | C2H2, Asphalt | CVD | 1259/1083 | 86 | 821.7 (200 cycles) | 1 A·g-1 | 10–20 μm | – | Rct = 82.6 Ω | 2019 | 76 |
SiO/C | CH4 | FTCVD | 1463/1200 | 82 | 501 (300 cycles) | 1.2 A·g-1 | 6–7 μm | 50 nm | Rct = 53.39 Ω | 2019 | 77 |
SiO/Graphite/C | Graphite, CH4 | FTCVD | 930/800 | 86 | 799.1 (100 cycles) | 200 mA·g-1 | 12 μm | – | Rct = 14.55 Ω | 2019 | 78 |
SiO/1D-C/α-C | C2H2 | FBCVD | 1445/1012 | 70 | 893.6 (120 cycles) | 0.1 A·g-1 | – | 100 nm | Rct = 170 Ω | 2020 | 79 |
d-SiO/C @NCNB | C2H2, Hydroquinone, HCHO | CVD, Heat-treatment, Carbonization | 1375/1004 | 73 | 1043 (100 cycles) | 0.1C | 5–18 μm | – | – | 2020 | 80 |
SiO/G/CNT | Graphite, CH4 | Ball-milling, CVD | 789/513 | 65 | 495 (100 cycles) | 230 mA·g-1 | 3 μm | – | Rct = 44.16 Ω | 2011 | 81 |
Si/SiOx/C-3 | Graphite | Ball-milling | 882/649 | 73.6 | 726 (500 cycles) | 0.1 A·g-1 | – | – | – | 2017 | 82 |
SiOx@NC | m-Phenylenediamine, Hexamethylenetetr amine, Pluronic F127 | Ball-milling, Grinding, Annealing | 1309/774 | 59.1 | 709 (100 cycles) | 200 mA·g-1 | 200–300 nm | 40 nm | – | 2020 | 83 |
表5
湿法与干法碳包覆特点的比较"
Carbon precursor | Synthesis methods | Advantages | Disadvantages | |
Wet chemical carbon coating | Organic solvents, ionic liquid | Stirring under heating, calcination | Abundant and cheap carbon sources; Simple and low-cost process; Various fabricating methods | The structure of carbon coat unlikely to be controlled due to the reactions in solvents; Consequent calcination after wet reaction increasing the whole cost; Toxic liquids produced from the reaction causing environmental pollution |
Dry chemical carbon coating | C2H2, CH4, asphalt, graphite | CVD, ball-milling | Technology being mature and available for large-scale manufacturing; easy to control the reaction and manipulate the carbon-coating structure; forthright process and mild conditions for solid reactions | High-cost and severe danger due to gas reactions; Toxic gases produced from the reaction causing expensive disposal and environmental pollution |
表6
金属掺杂改性后的SiO材料性能"
Sample | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Year | Ref. |
SiAl0.2O | 2225/1500 | 67.4 | 800 (100 cycles) | 200 mA·g-1 | – | 2010 | 86 |
SiO/SnCoC | 1480/1030 | 69.6 | 900 (100 cycles) | C/3 | ~2.5 μm | 2012 | 88 |
SiO/SnFeC | 1427/961 | 67 | 538 (100 cycles) | C/3 | ~9 μm | 2013 | 89 |
SiO/ZrO2@C | 1737.3/1156.8 | 66.58 | 930 (100 cycles) | 80 mA·g-1 | 200–500 nm | 2017 | 90 |
SiO/nano-Sn | 2066/1863.8 | 90.2 | 900 (100 cycles) | 200 mA·g-1 | – | 2018 | 92 |
表7
金属氧化物包覆改性后SiO材料的电化学性能"
Sample | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Coating thickness | Conductive property | Year | Ref. |
SiO/TiO2 | 1757/1265 | 72 | – | – | 6 μm | – | Rct = 63.69 Ω | 2012 | 97 |
SiO/ Fe2O3 | 2773/1893 | 68 | 1335 (50 cycles) | 160 mA·g-1 | – | – | – | 2013 | 93 |
SiO/TiO2 | 1654/1292 | 78.1 | 730 (100 cycles) | 100 mA·g-1 | – | 50–150 nm | R = 12 Ω | 2019 | 98 |
SiO/a-TiO2 | 1920/1524 | 79.4 | 901 (200 cycles) | 200 mA·g-1 | 160 nm | 20–30 nm | Rct = 391 Ω | 2019 | 99 |
表8
多重包覆改性后的SiO材料性能"
Sample | Initial discharge/charge specific capacity (mAh·g-1) | ICE (%) | Cycling performance (mAh·g-1) | Current density | Particle size | Coating thickness | Conductive property | Year | Ref. |
SiO/Cu/EG | 2400/1177 | 49 | 836 (100 cycles) | 200 mA·g-1 | – | – | – | 2017 | 102 |
bm-SiO/Ni/rGO | 1636.4/1021.7 | 62.4 | 720 (100 cycles) | 100 mA·g-1 | ~200 nm | ~5 nm | Rct = 72.4 Ω | 2018 | 103 |
SiO@C/BaTiO3/CNT | 952/771 | 81 | 711.7 (100 cycles) | 0.1 A·g-1 | 8 μm | – | Rct =59.5 Ω | 2019 | 104 |
SiO@C/TiO2 | 1590/1542 | 97 | 1565 (100 cycles) | 0.1 A·g-1 | 400 nm | 50 nm | – | 2020 | 105 |
1 |
Kim M. G. ; Cho J. Adv. Funct. Mater. 2009, 19 (10), 1497.
doi: 10.1002/adfm.200801095 |
2 | Li H. ; Lv Y. C. J. Electrochem 2015, 21 (5), 412. |
李泓; 吕迎春. 电化学,, 2015, 21 (5), 412.
doi: 10.13208/j.electrochem.150750 |
|
3 |
Cui Q. ; Zhong Y. ; Pan L. ; Zhang H. ; Yang Y. ; Liu D. ; Teng F. ; Bando Y. ; Yao J. ; Wang X. Adv. Sci. 2018, 5 (7), 2198.
doi: 10.1002/advs.201700902 |
4 | Chen D. Q. ; Li Q. L. ; Yang Y. ; Zhao J. B. J. Electrochem 2016, 22 (5), 489. |
陈丁琼; 李秋丽; 杨阳; 赵金保. 电化学, 2016, 22 (5), 489.
doi: 10.13208/j.electrochem.160543 |
|
5 | Lu H. ; Li J. Y. ; Liu B. N. ; Chu G. ; Xu Q. ; Li G. ; Luo F. ; Zheng J. Y. ; Yin Y. X. ; Guo Y. G. Energy Storage Sci. Technol. 2017, 5, 864. |
陆浩; 李金熠; 刘柏男; 褚赓; 徐泉; 李阁; 罗飞; 郑杰允; 殷雅侠; 郭玉国. 储能科学与技术, 2017, 5, 864.
doi: 10.12028/j.issn.2095-4239.2017.0096 |
|
6 |
Li J. Y. ; Xu Q. ; Li G. ; Yin Y. X. ; Wan L.-J. ; Guo Y. G. Mater. Chem. Front. 2017, 1 (9), 1691.
doi: 10.1039/c6qm00302h |
7 |
Liu D. ; Liu Z. ; Li X. ; Xie W. ; Wang Q. ; Liu Q. ; Fu Y. ; He D. Small 2017, 13 (45), 1702000.
doi: 10.1002/smll.201702000 |
8 | An H. F. ; Jiang L. ; Li F. ; Wu P. ; Zhu X. S. ; Wei S. H. ; Zhou Y. M. Acta Phys. -Chim. Sin. 2020, 36 (7), 1905034. |
安惠芳; 姜莉; 李峰; 吴平; 朱晓舒; 魏少华; 周益明. 物理化学学报, 2020, 36 (7), 1905034.
doi: 10.3866/PKU.WHXB201905034 |
|
9 |
Ma D. ; Cao Z. ; Hu A. Nano-Micro Lett. 2014, 6 (4), 347.
doi: 10.1007/s40820-014-0008-2 |
10 |
Ren W. F. ; Zhou Y. ; Li J. T. ; Huang L. ; Sun S. G. Curr. Opin. Electrochem. 2019, 18, 46.
doi: 10.1016/j.coelec.2019.09.006 |
11 |
Liang B. ; Liu Y. ; Xu Y. J. Power Sources 2014, 267, 469.
doi: 10.1016/j.jpowsour.2014.05.096 |
12 |
Ko M. ; Chae S. ; Cho J. Chemelectrochem 2015, 2 (11), 1645.
doi: 10.1002/celc.201500254 |
13 |
Beaulieu L. ; Hatchard T. ; Bonakdarpour A. ; Fleischauer M. ; Dahn J. J. Electrochem. Soc. 2003, 150 (11), A1457.
doi: 10.1149/1.1613668 |
14 |
Huang S. ; Ren J. ; Liu R. ; Yue M. ; Huang Y. ; Yuan G. Int. J. Energy Res. 2018, 42 (3), 919.
doi: 10.1002/er.3826 |
15 |
Shin J. ; Kim T. H. ; Lee Y. ; Cho E. Energy Storage Mater. 2020, 25, 764.
doi: 10.1016/j.ensm.2019.09.009 |
16 |
Hu Z. ; Zhao L. ; Jiang T. ; Liu J. ; Rashid A. ; Sun P. ; Wang G. ; Yan C. ; Zhang L. Adv. Funct. Mater. 2019, 29 (45), 1906548.
doi: 10.1002/adfm.201906548 |
17 |
Luo F. ; Chu G. ; Xia X. ; Liu B. ; Zheng J. ; Li J. ; Li H. ; Gu C. ; Chen L. Nanoscale 2015, 7 (17), 7651.
doi: 10.1039/C5NR00045A |
18 |
Wu H. ; Cui Y. Nano Today 2012, 7 (5), 414.
doi: 10.1016/j.nantod.2012.08.004 |
19 |
Zhu X. ; Yang D. ; Li J. ; Su F. J. Nanosci. Nanotechnol. 2015, 15 (1), 15.
doi: 10.1166/jnn.2015.9712 |
20 | Mabery C. F. Am. Chem. J. 1887, 9, 11. |
21 | Lu, H. Research of Silicon-based Anode Materials for High-Energy-Density Lithium Ion Battery. Ph. D., Chinese Academy of Science, Beijing, 2019. |
陆浩. 高能量密度锂离子电池硅基负极材料研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2019. | |
22 |
Ko M. ; Oh P. ; Chae S. ; Cho W. ; Cho J. Small 2015, 11 (33), 4058.
doi: 10.1002/smll.201500474 |
23 |
Ryu J. ; Hong D. ; Lee H. W. ; Park S. Nano Res. 2017, 10 (12), 3970.
doi: 10.1007/s12274-017-1692-2 |
24 |
Zhang L. ; Zhang L. ; Chai L. ; Xue P. ; Hao W. ; Zheng H. J. Mater. Chem. A 2014, 2 (44), 19036.
doi: 10.1039/C4TA04320K |
25 |
Zhu X. ; Zhang F. ; Zhang L. ; Zhang L. ; Song Y. ; Jiang T. ; Sayed S. ; Lu C. ; Wang X. ; Sun J. ; et al Adv. Funct. Mater. 2018, 28 (11), 1705015.
doi: 10.1002/adfm.201705015 |
26 |
Zhang L. ; Zhang L. ; Zhang J. ; Hao W. ; Zheng H. J. Mater. Chem. A 2015, 3 (30), 15432.
doi: 10.1039/C5TA03750F |
27 |
Philipp H. R. J. Phys. Chem. Solids 1971, 32 (8), 1935.
doi: 10.1016/S0022-3697(71)80159-2 |
28 |
Brady G. W. J. Phys. Chem. 1959, 63 (7), 1119.
doi: 10.1021/j150577a020 |
29 |
Temkin R. J. J. Non-Cryst. Solids 1975, 17 (2), 215.
doi: 10.1016/0022-3093(75)90052-6 |
30 |
Hohl A. ; Wieder T. ; van Aken P. A. ; Weirich T. E. ; Denninger G. ; Vidal M. ; Oswald S. ; Deneke C. ; Mayer J. ; Fuess H. J. Non-Cryst. Solids 2003, 320 (1), 255.
doi: 10.1016/S0022-3093(03)00031-0 |
31 |
Schulmeister K. ; Mader W. J. Non-Cryst. Solids 2003, 320 (1), 143.
doi: 10.1016/S0022-3093(03)00029-2 |
32 |
Hirata A. ; Kohara S. ; Asada T. ; Arao M. ; Yogi C. ; Imai H. ; Tan Y. ; Fujita T. ; Chen M. Nat. Commun. 2016, 7 (1), 11591.
doi: 10.1038/ncomms11591 |
33 |
Liu Z. ; Yu Q. ; Zhao Y. ; He R. ; Xu M. ; Feng S. ; Li S. ; Zhou L. ; Mai L. Chem. Soc. Rev. 2019, 48 (1), 285.
doi: 10.1039/C8CS00441B |
34 |
Miyachi M. ; Yamamoto H. ; Kawai H. ; Ohta T. ; Shirakata M. J. Electrochem. Soc. 2005, 152 (10), A2089.
doi: 10.1149/1.2013210 |
35 |
Yu B. C. ; Hwa Y. ; Park C. M. ; Sohn H. J. J. Mater. Chem. A 2013, 1 (15), 4820.
doi: 10.1039/C3TA00045A |
36 |
Jung S. C. ; Kim H. J. ; Kim J. H. ; Han Y. K. J. Phys. Chem. C 2016, 120 (2), 886.
doi: 10.1021/acs.jpcc.5b10589 |
37 |
Kim J. H. ; Park C. M. ; Kim H. ; Kim Y. J. ; Sohn H. J. J. Electroanal. Chem. 2011, 661 (1), 245.
doi: 10.1016/j.jelechem.2011.08.010 |
38 |
Yang X. ; Wen Z. ; Xu X. ; Lin B. ; Huang S. J. Power Sources 2007, 164 (2), 880.
doi: 10.1016/j.jpowsour.2006.11.010 |
39 |
Hwa Y. ; Park C. M. ; Sohn H. J. J. Power Sources 2013, 222, 129.
doi: 10.1016/j.jpowsour.2012.08.060 |
40 |
Kim J. H. ; Sohn H. J. ; Kim H. ; Jeong G. ; Choi W. J. Power Sources 2007, 170 (2), 456.
doi: 10.1016/j.jpowsour.2007.03.081 |
41 |
Doh C. H. ; Park C. W. ; Shin H. M. ; Kim D. H. ; Chung Y. D. ; Moon S. I. ; Jin B. S. ; Kim H. S. ; Veluchamy A. J. Power Sources 2008, 179 (1), 367.
doi: 10.1016/j.jpowsour.2007.12.074 |
42 |
Si Q. ; Hanai K. ; Ichikawa T. ; Phillipps M. B. ; Hirano A. ; Imanishi N. ; Yamamoto O. ; Takeda Y. J. Power Sources 2011, 196 (22), 9774.
doi: 10.1016/j.jpowsour.2011.08.005 |
43 |
Hou X. ; Wang J. ; Zhang M. ; Liu X. ; Shao Z. ; Li W. ; Hu S. RSC Adv. 2014, 4, 34615.
doi: 10.1039/C4RA03475A |
44 |
Guo L. ; He H. ; Ren Y. ; Wang C. ; Li M. Chem. Eng. J. 2018, 335, 32.
doi: 10.1016/j.cej.2017.10.145 |
45 |
An W. ; Gao B. ; Mei S. ; Xiang B. ; Fu J. ; Wang L. ; Zhang Q. ; Chu P. K. ; Huo K. Nat. Commun. 2019, 10 (1), 1447.
doi: 10.1038/s41467-019-09510-5 |
46 |
Lee J. I. ; Lee K. T. ; Cho J. ; Kim J. ; Choi N. S. ; Park S. Angew. Chem. Int. Ed. 2012, 51 (11), 2767.
doi: 10.1002/anie.201108915 |
47 |
Lee J. I. ; Park S. Nano Energy 2013, 2 (1), 146.
doi: 10.1016/j.nanoen.2012.08.009 |
48 |
Yu B. C. ; Hwa Y. ; Kim J. H. ; Sohn H. J. Electrochim. Acta 2014, 117, 426.
doi: 10.1016/j.electacta.2013.11.158 |
49 |
Huang X. ; Li M. Appl. Surf. Sci. 2018, 439, 336.
doi: 10.1016/j.apsusc.2017.12.184 |
50 |
Ge J. ; Tang Q. ; Shen H. ; Zhou F. ; Zhou H. ; Yang W. ; Xu B. ; Cong X. Ceram. Int. 2020, 46 (8), 12507.
doi: 10.1016/j.ceramint.2020.02.013 |
51 |
Park D. ; Kim H. S. ; Seo H. ; Kim K. ; Kim J. H. Electrochim. Acta 2020, 357, 136862.
doi: 10.1016/j.electacta.2020.136862 |
52 |
Zhang J. ; Zhang L. ; Xue P. ; Zhang L. ; Zhang X. ; Hao W. ; Tian J. ; Shen M. ; Zheng H. J. Mater. Chem. A 2015, 3 (15), 7810.
doi: 10.1039/C5TA00457H |
53 |
Zhang L. ; Hao W. ; Wang H. ; Zhang L. ; Feng X. ; Zhang Y. ; Chen W. ; Pang H. ; Zheng H. J. Mater. Chem. A 2013, 1 (26), 7601.
doi: 10.1039/C3TA11034F |
54 |
Zhang Y. ; Li K. ; Ji P. ; Chen D. ; Zeng J. ; Sun Y. ; Zhang P. ; Zhao J. J. Mater. Sci. 2017, 52 (7), 3630.
doi: 10.1007/s10853-016-0503-6 |
55 |
Hirose T. ; Takahashi K. ; Matsuno T. ; Osawa Y. ; Furuya M. ; Sakai R. ; Matsui C. ; Koide H. J. Electrochem. Soc. 2020, 167 (12), 120523.
doi: 10.1149/1945-7111/abaf77 |
56 |
Lin Z. ; Li J. ; Huang Q. ; Xu K. ; Fan W. ; Yu L. ; Xia Q. ; Li W. J. Phys. Chem. C 2019, 123 (20), 12902.
doi: 10.1021/acs.jpcc.9b02509 |
57 |
Lu H. ; Wang J. Y. ; Liu B. N. ; Chu G. ; Zhou G. ; Luo F. ; Zheng J. Y. ; Yu X. Q. ; Li H. Chin. Phys. B 2019, 28 (6), 8.
doi: 10.1088/1674-1056/28/6/068201 |
58 |
Jiang B. ; Zeng S. ; Wang H. ; Liu D. ; Qian J. ; Cao Y. ; Yang H. ; Ai X. ACS Appl. Mater. Interfaces 2016, 8 (46), 31611.
doi: 10.1021/acsami.6b09775 |
59 |
Cao Z. ; Xia B. ; Xie X. ; Zhao J. Electrochim. Acta 2019, 313, 311.
doi: 10.1016/j.electacta.2019.05.045 |
60 |
Ke C. Z. ; Liu F. ; Zheng Z. M. ; Zhang H. H. ; Cai M. T. ; Li M. ; Yan Q. Z. ; Chen H. X. ; Zhang Q. B. Rare Met. 2021, 40, 1347.
doi: 10.1007/s12598-021-01716-1 |
61 |
Li Q. ; Chen D. ; Li K. ; Wang J. ; Zhao J. Electrochim. Acta 2016, 202, 140.
doi: 10.1016/j.electacta.2016.04.019 |
62 |
Yang Y. ; Li J. ; Chen D. ; Fu T. ; Sun D. ; Zhao J. ChemElectroChem 2016, 3 (5), 757.
doi: 10.1002/celc.201600012 |
63 | Sun Y. Z. ; Chen D. Q. ; Peng Y. Y. ; Zhang Y. Y. ; Zhao J. B. J. Xiamen Univ. Nat. Sci. 2018, 57 (4), 463. |
孙亚洲; 陈丁琼; 彭月盈; 张义永; 赵金保. 厦门大学学报, 2018, 57 (4), 463.
doi: 10.6043/j.issn.0438-0479.201711015 |
|
64 |
Zhang Q. ; Lin N. ; Xu T. ; Shen K. ; Li T. ; Han Y. ; Zhou J. ; Qian Y. RSC Adv. 2017, 7 (63), 39762.
doi: 10.1039/c7ra05829b |
65 |
Dou F. ; Shi L. ; Song P. ; Chen G. ; An J. ; Liu H. ; Zhang D. Chem. Eng. J. 2018, 338, 488.
doi: 10.1016/j.cej.2018.01.048 |
66 |
Han J. ; Chen G. ; Yan T. ; Liu H. ; Shi L. ; An Z. ; Zhang J. ; Zhang D. Chem. Eng. J. 2018, 347, 273.
doi: 10.1016/j.cej.2018.04.100 |
67 |
Wang H. ; Maiyalagan T. ; Wang X. ACS Catal. 2012, 2 (5), 781.
doi: 10.1021/cs200652y |
68 |
Liao X. ; Peng M. ; Liang K. J. Electroanal. Chem. 2019, 841, 79.
doi: 10.1016/j.jelechem.2019.04.040 |
69 |
Zeng Y. ; Huang Y. ; Liu N. ; Wang X. ; Zhang Y. ; Guo Y. ; Wu H. H. ; Chen H. ; Tang X. ; Zhang Q. J. Energy Chem. 2021, 54, 727.
doi: 10.1016/j.jechem.2020.06.022 |
70 |
Lee D. J. ; Ryou M. H. ; Lee J. N. ; Kim B. G. ; Lee Y. M. ; Kim H. W. ; Kong B. S. ; Park J. K. ; Choi J. W. Electrochem. Commun. 2013, 34, 98.
doi: 10.1016/j.elecom.2013.05.029 |
71 |
Peng M. ; Qiu Y. ; Zhang M. ; Xu Y. ; Yi L. ; Liang K. Appl. Surf. Sci. 2020, 507, 145060.
doi: 10.1016/j.apsusc.2019.145060 |
72 |
Wu Z. L. ; Ji S. B. ; Liu L. K. ; Xie T. ; Tan L. ; Tang H. ; Sun R. G. Rare Met. 2020, 40, 1110.
doi: 10.1007/s12598-020-01445-x |
73 |
Hu L. ; Xia W. ; Tang R. ; Hu R. ; Ouyang L. ; Sun T. ; Wang H. Front. Chem. 2020, 8, 388.
doi: 10.3389/fchem.2020.00388 |
74 |
Kuang S. ; Xu D. ; Chen W. ; Huang X. ; Sun L. ; Cai X. ; Yu X. Appl. Surf. Sci. 2020, 521, 146497.
doi: 10.1016/j.apsusc.2020.146497 |
75 |
Shi L. ; Pang C. ; Chen S. ; Wang M. ; Wang K. ; Tan Z. ; Gao P. ; Ren J. ; Huang Y. ; Peng H. ; et al Nano Lett. 2017, 17 (6), 3681.
doi: 10.1021/acs.nanolett.7b00906 |
76 |
Li J. ; Wang L. ; Liu F. ; Liu W. ; Luo C. ; Liao Y. ; Li X. ; Qu M. ; Wan Q. ; Peng G. ChemistrySelect 2019, 4 (10), 2918.
doi: 10.1002/slct.201900337 |
77 |
Xia M. ; Zhou Z. ; Su Y. ; Li Y. ; Wu Y. ; Zhou N. ; Zhang H. ; Xiong X. Appl. Surf. Sci. 2019, 467-468, 298.
doi: 10.1016/j.apsusc.2018.10.156 |
78 |
Xia M. ; Li Y. ; Zhou Z. ; Wu Y. ; Zhou N. ; Zhang H. ; Xiong X. Ceram. Int. 2019, 45 (2), 1950.
doi: 10.1016/j.ceramint.2018.10.088 |
79 |
Shi H. ; Zhang H. ; Li X. ; Du Y. ; Hou G. ; Xiang M. ; Lv P. ; Zhu Q. Carbon 2020, 168, 113.
doi: 10.1016/j.carbon.2020.06.053 |
80 |
Zeng S. Z. ; Niu Y. ; Zou J. ; Zeng X. ; Zhu H. ; Huang J. ; Wang L. ; Kong L. B. ; Han P. J. Power Sources 2020, 466, 228234.
doi: 10.1016/j.jpowsour.2020.228234 |
81 |
Ren Y. ; Ding J. ; Yuan N. ; Jia S. ; Qu M. ; Yu Z. J. Solid State Electr. 2011, 16 (4), 1453.
doi: 10.1007/s10008-011-1525-2 |
82 |
Qian L. ; Lan J. L. ; Xue M. ; Yu Y. ; Yang X. RSC Adv. 2017, 7 (58), 36697.
doi: 10.1039/c7ra06671f |
83 |
Hu G. ; Zhong K. ; Yu R. ; Liu Z. ; Zhang Y. ; Wu J. ; Zhou L. ; Mai L. J. Mater. Chem. A 2020, 8 (26), 13285.
doi: 10.1039/d0ta00540a |
84 |
Zhang Q. ; Chen H. ; Luo L. ; Zhao B. ; Luo H. ; Han X. ; Wang J. ; Wang C. ; Yang Y. ; Zhu T. ; et al Energy Environ. Sci. 2018, 11 (3), 669.
doi: 10.1039/C8EE00239H |
85 |
Miyachi M. ; Yamamoto H. ; Kawai H. J. Electrochem. Soc. 2007, 154 (4), A376.
doi: 10.1149/1.2455963 |
86 |
Jeong G. ; Kim Y. U. ; Krachkovskiy S. A. ; Lee C. K. Chem. Mater. 2010, 22 (19), 5570.
doi: 10.1021/cm101747w |
87 | http://www.sony.net/SonyInfo/News/Press/200502/05-006E/ (accessed on February 24 2021) |
88 |
Liu B. ; Abouimrane A. ; Ren Y. ; Balasubramanian M. ; Wang D. ; Fang Z. Z. ; Amine K. Chem. Mater. 2012, 24 (24), 4653.
doi: 10.1021/cm3017853 |
89 |
Liu B. ; Abouimrane A. ; Brown D. E. ; Zhang X. ; Ren Y. ; Fang Z. Z. ; Amine K. J. Mater. Chem. A 2013, 1 (13), 4376.
doi: 10.1039/c3ta00101f |
90 |
Cheng F. ; Wang G. ; Sun Z. ; Yu Y. ; Huang F. ; Gong C. ; Liu H. ; Zheng G. ; Qin C. ; Wen S. Ceram. Int. 2017, 43 (5), 4309.
doi: 10.1016/j.ceramint.2016.12.074 |
91 |
Poizot P. ; Laruelle S. ; Grugeon S. ; Dupont L. ; Tarascon J. M. Nature 2000, 407 (6803), 496.
doi: 10.1038/35035045 |
92 |
Fu R. ; Wu Y. ; Fan C. ; Long Z. ; Shao G. ; Liu Z. ChemSusChem 2019, 12 (14), 3377.
doi: 10.1002/cssc.201900541 |
93 |
Zhou M. ; Gordin M. L. ; Chen S. ; Xu T. ; Song J. ; Lv D. ; Wang D. Electrochem. Commun. 2013, 28, 79.
doi: 10.1016/j.elecom.2012.12.013 |
94 |
Sakuda A. ; Hayashi A. ; Tatsumisago M. J. Power Sources 2010, 195 (2), 599.
doi: 10.1016/j.jpowsour.2009.07.037 |
95 |
Kannan A. M. ; Rabenberg L. ; Manthiram A. Electrochem. Solid-State Lett. 2003, 6 (1), A16.
doi: 10.1149/1.1526782 |
96 |
Zheng J. M. ; Li J. ; Zhang Z. R. ; Guo X. J. ; Yang Y. Solid State Ionics 2008, 179 (27), 1794.
doi: 10.1016/j.ssi.2008.01.091 |
97 |
Jeong G. ; Kim J. H. ; Kim Y. U. ; Kim Y. J. J. Mater. Chem. 2012, 22 (16), 7999.
doi: 10.1039/c2jm15677f |
98 |
Zhou N. ; Wu Y. ; Zhou Q. ; Li Y. ; Liu S. ; Zhang H. ; Zhou Z. ; Xia M. Appl. Surf. Sci. 2019, 486, 292.
doi: 10.1016/j.apsusc.2019.05.025 |
99 |
Xu D. ; Chen W. ; Luo Y. ; Wei H. ; Yang C. ; Cai X. ; Fang Y. ; Yu X. Appl. Surf. Sci. 2019, 479, 980.
doi: 10.1016/j.apsusc.2019.02.156 |
100 |
Cai X. ; Liu W. ; Yang S. ; Zhang S. ; Gao Q. ; Yu X. ; Li J. ; Wang H. ; Fang Y. ACS Adv. Mater. Interfaces 2019, 6 (10), 1801800.
doi: 10.1002/admi.201801800 |
101 |
Zheng Z. ; Wu H. H. ; Chen H. ; Cheng Y. ; Zhang Q. ; Xie Q. ; Wang L. ; Zhang K. ; Wang M. S. ; Peng D. L., et al. Nanoscale 2018, 10 (47), 22203.
doi: 10.1039/C8NR07207H |
102 |
Zhang J. ; Zhang J. ; Bao T. ; Xie X. ; Xia B. J. Power Sources 2017, 348, 16.
doi: 10.1016/j.jpowsour.2017.02.076 |
103 |
Liu Y. ; Huang J. ; Zhang X. ; Wu J. ; Baker A. ; Zhang H. ; Chang S. ; Zhang X. J. Alloys Compd. 2018, 749, 236.
doi: 10.1016/j.jallcom.2018.03.229 |
104 |
Xia M. ; Li Y. R. ; Xiong X. ; Hu W. ; Tang Y. W. ; Zhou N. ; Zhou Z. ; Zhang H. B. J. Alloys Compd. 2019, 800, 116.
doi: 10.1016/j.jallcom.2019.05.365 |
105 |
Liu L. ; Li X. ; He G. ; Zhang G. ; Su G. ; Fang C. J. Alloys Compd. 2020, 836, 155407.
doi: 10.1016/j.jallcom.2020.155407 |
[1] | 刘元凯, 余涛, 郭少华, 周豪慎. 高性能硫化物基全固态锂电池设计:从实验室到实用化[J]. 物理化学学报, 2023, 39(8): 2301027 -0 . |
[2] | 鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 2211057 -0 . |
[3] | 汪茹, 刘志康, 严超, 伽龙, 黄云辉. 高安全锂离子电池复合集流体的界面强化[J]. 物理化学学报, 2023, 39(2): 2203043 -0 . |
[4] | 杨越, 朱加伟, 王鹏彦, 刘海咪, 曾炜豪, 陈磊, 陈志祥, 木士春. 镶嵌于NH2-MIL-125 (Ti)衍生氮掺多孔碳中的花状超细纳米TiO2作为高活性和稳定性的锂离子电池负极材料[J]. 物理化学学报, 2022, 38(6): 2106002 - . |
[5] | 莫英, 肖逵逵, 吴剑芳, 刘辉, 胡爱平, 高鹏, 刘继磊. 锂离子电池隔膜的功能化改性及表征技术[J]. 物理化学学报, 2022, 38(6): 2107030 - . |
[6] | 吴锋, 李晴, 陈来, 王紫润, 陈刚, 包丽颖, 卢赟, 陈实, 苏岳锋. 高镍正极材料中钴元素的替代方案及其合成工艺优化[J]. 物理化学学报, 2022, 38(5): 2007017 - . |
[7] | 刘学伟, 牛莹, 曹瑞雄, 陈晓红, 商红岩, 宋怀河. 石墨烯包覆天然球形石墨作为锂离子电池的负极材料,是否需要乙炔黑导电剂?[J]. 物理化学学报, 2022, 38(2): 2012062 - . |
[8] | 丁晓博, 黄倩晖, 熊训辉. 锂离子电池快充石墨负极研究与应用[J]. 物理化学学报, 2022, 38(11): 2204057 - . |
[9] | 苏岳锋, 张其雨, 陈来, 包丽颖, 卢赟, 陈实, 吴锋. ZrO2包覆高镍LiNi0.8Co0.1Mn0.1O2正极材料提高其循环稳定性的作用机理[J]. 物理化学学报, 2021, 37(3): 2005062 - . |
[10] | 张思东, 刘园, 祁慕尧, 曹安民. 表面限域掺杂提升高比能正极材料稳定性[J]. 物理化学学报, 2021, 37(11): 2011007 - . |
[11] | 叶耀坤, 胡宗祥, 刘佳华, 林伟成, 陈涛文, 郑家新, 潘锋. 锂离子电池正极材料中的极化子现象理论计算研究进展[J]. 物理化学学报, 2021, 37(11): 2011003 - . |
[12] | 安惠芳, 姜莉, 李峰, 吴平, 朱晓舒, 魏少华, 周益明. 基于水凝胶衍生的硅/碳纳米管/石墨烯纳米复合材料及储锂性能[J]. 物理化学学报, 2020, 36(7): 1905034 - . |
[13] | 李超, 沈明, 胡炳文. 面向金属离子电池研究的固体核磁共振和电子顺磁共振方法[J]. 物理化学学报, 2020, 36(4): 1902019 - . |
[14] | 史永超, 唐明学. 可充电池的磁共振研究[J]. 物理化学学报, 2020, 36(4): 1905004 - . |
[15] | 刘昆, 刘瑶, 朱海峰, 董晓丽, 王永刚, 王丛笑, 夏永姚. NaTiSi2O6/C复合材料用于锂离子电池负极材料[J]. 物理化学学报, 2020, 36(11): 1912030 - . |
|