Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (8): 808-815.doi: 10.3866/PKU.WHXB201901035
• COMMUNICATION • Previous Articles Next Articles
Jiali FANG,Xin CHEN*(),Chang LI,Yulian WU
Received:
2019-01-16
Accepted:
2019-03-01
Published:
2019-03-08
Contact:
Xin CHEN
E-mail:xinchen73@ecust.edu.cn
Supported by:
Jiali FANG, Xin CHEN, Chang LI, Yulian WU. Observation of the Gold Nanorods/Graphene Composite Formation and Motion with in situ Liquid Cell Transmission Electron Microscopy[J]. Acta Physico-Chimica Sinica 2019, 35(8), 808-815. doi: 10.3866/PKU.WHXB201901035
Fig 1
TEM images of AuNRs and AuNRs/G composites. (a) TEM image of AuNRs. (b) Enlarged TEM image of the area outlined by the white box in (a). (c) TEM image of AuNRs/G composites. Black arrows refer to AuNRs distributed at the edge/fold of graphene, and red arrow refers to AuNR distributed in the sheet. (d) SAED pattern of AuNRs/G composites."
Fig 2
Dynamic in situ liquid cell TEM observation of the tip of AuNRs affixed to the graphene edge. (a) Global images of AuNRs before and after compositing with graphene. (b) Track of AuNRs. (c) In situ TEM images of the relative position changes of AuNRs before and after composite with graphene. AuNRs tend to approach the graphene edges through the tips due to charge attraction."
Fig 6
Catalytic performance of AuNRs/G composites. (a) UV-Vis spectrum of 4-NP before and after the addition of NaBH4. (b–e) UV-Vis spectra with the composite mass ratio of 1 : 0, 1 : 1, 1 : 5 and 1 : 10. (f) ln(C/C0) versus reaction time for the reduction of 4-NP over different mass ratios of AuNRs/G composites. The self-assembled catalyst with mass composite 1 : 5 AuNRs/G ratio showed the best performance, with a kapp value of 0.5570 min?1, which is 8 times of bare AuNRs."
1 |
Tian N. ; Zhou Z. Y. ; Sun S. G. ; Ding Y. ; Wang Z. L. Science 2007, 316, 732.
doi: 10.1126/science.1140484 |
2 |
Chu M. ; Zhang Y. ; Yang L. ; Tan Y. ; Deng W. ; Ma M. ; Su X. ; Xie Q. ; Yao S. Energy Environ. Sci. 2013, 6, 3600.
doi: 10.1039/C3EE41904E |
3 |
Orendorff C. J. ; Gole A. ; Sau T. K. ; Murphy C. J. Anal. Chem. 2005, 77, 3261.
doi: 10.1021/ac048176x |
4 |
Ozbay E. Science 2006, 311, 189.
doi: 10.1126/science.1114849 |
5 |
Anker J. N. ; Hall W. P. ; Lyandres O. ; Shah N. C. ; Zhao J. ; Van Duyne R. P. Nat. Mater. 2008, 7, 442.
doi: 10.1038/nmat2162 |
6 |
Lal S. ; Clare S. E. ; Halas N. J. Acc. Chem. Res. 2008, 41, 1842.
doi: 10.1021/ar800150g |
7 |
Zang W. ; Li G. ; Wang L. ; Zhang X. Catal. Sci. Technol. 2015, 5, 2532.
doi: 10.1039/C4CY01619J |
8 |
Song Y. ; Lü J. ; Liu B. ; Lü C. RSC Adv. 2016, 6, 64937.
doi: 10.1039/C6RA11710D |
9 |
Yang Y. ; Luo S. ; Guo S. ; Chao Y. ; Yang H. ; Li Y. Int. J. Hydrog. Energy 2017, 42, 29236.
doi: 10.1016/j.ijhydene.2017.10.086 |
10 |
Zanolli Z. ; Leghrib R. ; Felten A. ; Pireaux J. ; Llobet E. ; Charlier J. ACS Nano 2011, 5, 4592.
doi: 10.1021/nn200294h |
11 |
Jiang H. ; Akita T. ; Ishida T. ; Haruta M. ; Xu Q. J. Am. Chem. Soc. 2011, 133, 1304.
doi: 10.1021/ja1099006 |
12 |
Gu X. ; Lu Z. ; Jiang H. ; Akita T. ; Xu Q. J. Am. Chem. Soc. 2011, 133, 11822.
doi: 10.1021/ja200122f |
13 |
Yang X. ; Chen D. ; Liao S. ; Song H. ; Li Y. ; Fu Z. ; Su Y. J. Catal. 2012, 291, 36.
doi: 10.1016/j.jcat.2012.04.003 |
14 |
Wang S. ; Zhang M. ; Zhang W. ACS Catal. 2011, 1, 207.
doi: 10.1021/cs1000762 |
15 |
Xu Z. ; Luo J. ; Chuang K. T. J. Power Sources 2009, 188, 458.
doi: 10.1016/j.jpowsour.2008.12.008 |
16 |
Shi Y. ; Wang J. ; Wang C. ; Zhai T. ; Bao W. ; Xu J. ; Xia X. ; Chen H. J. Am. Chem. Soc. 2015, 137, 7365.
doi: 10.1021/jacs.5b01732 |
17 |
Chen X. ; Li C. ; Cao H. Nanoscale 2015, 7, 4811.
doi: 10.1039/C4NR07209J |
18 |
Zheng H. ; Smith R. K. ; Jun Y. ; Kisielowski C. ; Dahmen U. ; Alivisatos A. P. Science 2009, 324, 1309.
doi: 10.1126/science.1172104 |
19 |
Zhou X. Q. ; Zhang H. ; Zhang Z. ; Chen X. ; Jin C. H. Acta Phys. -Chim. Sin. 2017, 33, 458.
doi: 10.3866/PKU.WHXB201701041 |
周晓琴; 张辉; 张泽; 陈新; 金传洪. 物理化学学报, 2017, 33, 458.
doi: 10.3866/PKU.WHXB201701041 |
|
20 |
Liu Y. ; Chen. X. ; Noh K. W. N. ; Dillon S. J. Nanotechnology 2012, 23, 385302.
doi: 10.1088/0957-4484/23/38/385302 |
21 |
Jiang Y. ; Zhu G. ; Lin F. ; Zhang H. ; Jin C. ; Yuan J. ; Yang D. ; Zhang Z. Nano Lett. 2014, 14, 3761.
doi: 10.1021/nl500670q |
22 |
Wang J. ; Luo H. ; Liu Y. ; He Y. ; Fan F. ; Zhang Z. ; Mao S. X. ; Wang C. ; Zhu T. Nano Lett. 2016, 16, 5815.
doi: 10.1021/acs.nanolett.6b02581 |
23 |
Nie A. ; Cheng Y. ; Ning S. ; Foroozan T. ; Yasaei P. ; Li W. ; Song B. ; Yuan Y. ; Chen L. ; Salehi-Khojin A. ; et al Nano Lett. 2016, 16, 2240.
doi: 10.1021/acs.nanolett.5b04514 |
24 |
Lin G. ; Zhu X. ; Anand U. ; Liu Q. ; Lu J. ; Aabdin Z. ; Su H. ; Mirsaidov U. Nano Lett. 2016, 16, 1092.
doi: 10.1021/acs.nanolett.5b04323 |
25 |
Sutter E. ; Sutter P. ; Tkachenko A. V. ; Krahne R. ; de Graaf J. ; Arciniegas M. ; Manna L. Nat. Commun. 2016, 7, 11213.
doi: 10.1038/ncomms11213 |
26 |
de Jonge N. ; Peckys D. B. ; Kremers G. J. ; Piston D. W. Proc. Nat. Acad. Sci. 2009, 106, 2159.
doi: 10.1073/pnas.0809567106 |
27 |
Nikoobakht B. ; El-Sayed M. A. Chem. Mater. 2003, 15, 1957.
doi: 10.1021/cm020732l |
28 |
Li C. ; Chen X. ; Liu H. ; Fang J. ; Zhou X. Nano Res. 2018, 11, 4697.
doi: 10.1007/s12274-018-2052-6 |
29 |
Zheng H. Nanoscale 2013, 5, 4070.
doi: 10.1039/C3NR00737E |
30 |
Praharaj S. ; Nath S. ; Ghosh S. K. ; Kundu S. ; Pal T. Langmuir 2004, 20, 9889.
doi: 10.1021/la0486281 |
31 |
Chen X. ; Cai Z. ; Chen X. ; Oyama M. J. Mater. Chem. A 2014, 2, 5668.
doi: 10.1039/C3TA15141G |
32 |
Huang J. ; Vongehr S. ; Tang S. ; Lu H. ; Meng X. J. Phys. Chem. C 2010, 114, 15005.
doi: 10.1021/jp104675d |
33 |
Wang Y. ; Li H. ; Zhang J. ; Yan X. ; Chen Z. Phys. Chem. Chem. Phys. 2016, 18, 615.
doi: 10.1039/C5CP05336F |
34 |
Wang D. ; Duan H. ; Lü J. ; Lü C. J. Mater. Chem. A 2017, 5, 5088.
doi: 10.1039/C6TA09772C |
35 |
Li J. ; Liu C. ; Liu Y. J. Mater. Chem. 2012, 22, 8426.
doi: 10.1039/C2JM16386A |
36 |
Luo J. ; Zhang N. ; Liu R. ; Liu X. RSC Adv. 2014, 4, 64816.
doi: 10.1039/C4RA11950A |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[3] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[4] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[5] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[6] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[7] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[8] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[9] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[10] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[11] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[12] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[13] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[14] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[15] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
|