Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (12): 1341-1356.doi: 10.3866/PKU.WHXB201904042
• Review • Previous Articles Next Articles
Hongyao YIN*(),Yue YU,Zongcheng LI,Ganghong ZHANG,Yujun FENG*()
Received:
2019-04-10
Accepted:
2019-05-15
Published:
2019-05-22
Contact:
Hongyao YIN,Yujun FENG
E-mail:hyyin@scu.edu.cn;yjfeng@scu.edu.cn
Supported by:
Hongyao YIN,Yue YU,Zongcheng LI,Ganghong ZHANG,Yujun FENG. Smart Honeycomb-Patterned Porous Films: Fabrications, Responsive Properties, and Applications[J]. Acta Physico-Chimica Sinica 2019, 35(12), 1341-1356. doi: 10.3866/PKU.WHXB201904042
Fig 2
Mechanism of PNIPAAm modification on honeycomb films and their thermo-responsive surface wettability 67. (a) Grafting mechanism of NIPAAm utilizing the terminal RAFT group in PS-ran-PHEMA; (b) SEM image of the surface topography of PS-ran-PHEMA porous films and the inset is the SEM image of the porous film after peeling off the top layer; (c) AFM image of a grafted pore; (d) Contact angles of water on grafted and non-grafted honeycomb structured porous films at 25, 35 and 45 ℃."
Fig 6
Thermo-responsive behavior of morphology and wettability of honeycomb films modified with PNIPAAM-co-PAA gel 71. (a) Images of contact angle tests of P0, L, and D and correspondent cross-sectional images of pores on three types of surfaces; (b) Graph of contact angle as a function of time after a 3 μL drop of water was placed on the surface."
Fig 7
Microstructures of PS-b-P4VP honeycomb film and its pH-responsive wetting behavior 74. AFM phase images of PS-b-P4VP honeycomb film recorded in topographic mode (a) and phase mode (b); Reversibility of contact angles of a water droplet deposited onto honeycomb film (c) and micro-pillared film (d)."
Table 1
Water contact angles measured on continuous, honeycomb and micro-pillared films prepared from PS-b-PEEA diblock copolymers 73"
Film | PS-b-PEEA | PS-b-PAA/WCA at pH 3 | PS-b-PAA/WCA at pH 10 | |||||
BCP-1 | BCP-2 | BCP-1 | BCP-2 | BCP-1 | BCP-2 | |||
Continuous | 85° | 83° | 82° | 80° | 68° | 78° | ||
Honeycomb | 112° | 110° | 112° | 110° | 46° | 65° | ||
Micro-pillared | 155° | 150° | 75° | 90° | 45° | 70° |
Fig 9
Microstructure of PS-b-PVBC honeycomb film and its pH-responsive wettability after modification 75. (a) Schematic representation of the hierarchically structured honeycomb film with three levels of hierarchy; (b) Influence of pH value on the contact angle of droplets cast onto the honeycomb film."
Fig 10
The chemical structure of the P4VP-b-PAzoMA copolymer and the morphology of corresponding honeycomb films under different light irradiation 79. (a) The chemical structure of the P4VP-b-PAzoMA copolymer; (b) Two types of irradiation on honeycomb film; Deformed breath figure arrays after irradiation along the S direction and the V direction for 10 min (c, d) and 30 min (e, f)."
Fig 12
3D topographies of PS/P2VP honeycomb film under different conditions 84. (a) The as-casted film in air; (b) Immerged in water for 3 h; (c) the film of (b) after heating at 60 ℃ for 1 h; The as-casted film after exposure to CS2 vapor for (d) 15 min and (e) 20 min, (f) then after exposure to chloroform vapor for 10 min."
Fig 13
CO2-responsive wettability of honeycomb films and their application in cell culturing 46. (a) Schematic diagram of wetting model of honeycomb film; (b) Variation of CAs on honeycomb films upon sequentially treated with CO2 and heating; Optical image of cell attachment on (c) original honeycomb film with cell culture carried out in air atmosphere and (d) original film with cell culture carried out in 5% CO2 atmosphere."
Fig 15
pH and thermo dual-responsive honeycomb film and its application in controlled protein delivery 91. (a) Schematic illustration of the semi-interpenetrated networks (SIPN) of PNIPAM nanogels with PDMAEMA immobilization on the porous surface of PS/PS-b-PAA honeycomb film; (b) pH and thermo dual-responsive behavior of the nanogels; (c) Controlled fluorescent protein delivery from honeycomb film with nanogels. Insets after immersion correspond to bright field images from the same area."
Fig 17
NDS honeycomb film and its grinding-induced emission changes from orange to yellow 93. (a) Molecular structure of NDS; SEM images of the NDS xerogel obtained by the evaporation from (b) CH2Cl2 and (c) CHCl3; The fluorescence spectral changes of the xerogel obtained from (d) CH2Cl2 and (e) CHCl3 (λex = 450 nm) by grinding."
1 |
Widawski G. ; Rawiso M. ; François B. Nature 1994, 369, 387.
doi: 10.1038/369387a0 |
2 |
Stenzel M. H. Aust. J. Chem. 2002, 55, 239.
doi: 10.1071/CH02056 |
3 |
Hernandez-Guerrero M. ; Stenzel M. H. Polym. Chem. 2012, 3, 563.
doi: 10.1039/C1PY00219H |
4 |
Li Z. G. ; Ma X. Y. ; Hong Q. ; Guan X. H. Acta Phys. -Chim. Sin. 2015, 31, 393.
doi: 10.3866/PKU.WHXB201412261 |
栗志广; 马晓燕; 洪清; 管兴华. 物理化学学报, 2015, 31, 393.
doi: 10.3866/PKU.WHXB201412261 |
|
5 |
Escalé P. ; Rubatat L. ; Billon L. ; Save M. Eur. Polym. J. 2012, 48, 1001.
doi: 10.1016/j.eurpolymj.2012.03.001 |
6 |
Feng X. J. ; Jiang L. Adv. Mater. 2006, 18, 3063.
doi: 10.1002/adma.200501961 |
7 |
Li Z. ; Ma X. ; Kong Q. ; Zang D. ; Guan X. ; Ren X. J. Phys. Chem. C 2016, 120, 18659.
doi: 10.1021/acs.jpcc.6b06186 |
8 |
Chen S. ; Lu X. ; Hu Y. ; Lu Q. Biomater. Sci. 2015, 3, 85.
doi: 10.1039/C4BM00233D |
9 |
Bui V. T. ; Thuy L. T. ; Tran Q. C. ; Nguyen V. T. ; Dao V. D. ; Choi J. S. ; Choi H. S. Chem. Eng. J. 2017, 320, 561.
doi: 10.1016/j.cej.2017.03.086 |
10 |
Zhu Y. ; Sheng R. ; Luo T. ; Li H. ; Sun J. ; Chen S. ; Sun W. ; Cao A. ACS Appl. Mater. Interfaces 2011, 3, 2487.
doi: 10.1021/am200371c |
11 |
Bui V. T. ; Thuy L. L. ; Choi J. S. ; Choi H. S. J. Colloid Interface Sci. 2018, 513, 161.
doi: 10.1016/j.jcis.2017.11.024 |
12 |
Yao B. ; Zhu Q. ; Yao L. ; Hao J. Appl. Surf. Sci. 2015, 332, 287.
doi: 10.1016/j.apsusc.2015.01.170 |
13 |
Martínez-Campos E. ; Elzein T. ; Bejjani A. ; García-Granda M. J. ; Santos-Coquillat A. ; Ramos V. ; Muñoz-Bonilla A. ; Rodríguez-Hernández J. ACS Appl. Mater. Interfaces 2016, 8, 6344.
doi: 10.1021/acsami.5b12832 |
14 |
Tu Z. ; Tang H. ; Shen X. ACS Appl. Mater. Interfaces 2014, 6, 12931.
doi: 10.1021/am502871t |
15 |
Wu X. ; Wang S. ACS Appl. Mater. Interfaces 2012, 4, 4966.
doi: 10.1021/am301334s |
16 |
Zhao Y. ; Shang Q. ; Yu J. ; Zhang Y. ; Liu S. ACS Appl. Mater. Interfaces 2015, 7, 11783.
doi: 10.1021/acsami.5b03254 |
17 |
Chen S. ; Gao S. ; Jing J. ; Lu Q. Adv. Healthcare Mater. 2018, 7, 1701043.
doi: 10.1002/adhm.201701043 |
18 |
Zhang H. ; Liu Y. ; Luo T. ; Zhao Q. ; Cui K. ; Huang J. ; Jiang T. ; Ma Z. Polym. Chem. 2018, 9, 3922.
doi: 10.1039/C8PY00732B |
19 |
Gao F. ; Wang W. ; Li X. ; Li L. ; Lin J. ; Lin S. J. Colloid Interface Sci. 2016, 468, 70.
doi: 10.1016/j.jcis.2016.01.035 |
20 |
Yabu H. ; Shimomura M. Chem. Mater. 2005, 17, 5231.
doi: 10.1021/cm051281i |
21 |
Ting W. H. ; Chen C. C. ; Dai S. A. ; Suen S. Y. ; Yang I. K. ; Liu Y. L. ; Chen F. M. C. ; Jeng R. J. J. Mater. Chem. 2009, 19, 4819.
doi: 10.1039/B900468H |
22 |
Yu X. ; Zhong Q. Z. ; Yang H. C. ; Wan L. S. ; Xu Z. K. J. Phys. Chem. C 2015, 119, 3667.
doi: 10.1021/jp513001k |
23 |
Yabu H. ; Takebayashi M. ; Tanaka M. ; Shimomura M. Langmuir 2005, 21, 3235.
doi: 10.1021/la050013w |
24 |
Fang X. ; Men X. ; Chen H. ; Zhang Y. M. ; Sun H. ; Yin S. ; Qin W. J. Colloid Interface Sci. 2018, 512, 1.
doi: 10.1016/j.jcis.2017.10.007 |
25 |
Geping Z. ; Hongxia Z. ; Mengjun C. ; Hongguang L. ; Ye Y. ; Tiantai M. ; Jingcheng H. Chem. -Eur. J. 2017, 23, 7278.
doi: 10.1002/chem.201605651 |
26 |
Liu C. ; Gao C. ; Yan D. Angew. Chem. Int. Ed. 2007, 46, 4128.
doi: 10.1002/anie.200604429 |
27 |
Bertrand A. ; Dumur F. ; Mruczkiewicz M. ; Perrin M. ; Lartigau-Dagron C. ; Bousquet A. ; Vignau L. ; Billon L. ; Fasquel S. Org. Electron. 2018, 52, 222.
doi: 10.1016/j.orgel.2017.10.022 |
28 |
Zhu C. ; Tian L. ; Liao J. ; Zhang X. ; Gu Z. Adv. Funct. Mater. 2018, 28, 1803194.
doi: 10.1002/adfm.201803194 |
29 |
Li L. ; Zhong Y. ; Ma C. ; Li J. ; Chen C. ; Zhang A. ; Tang D. ; Xie S. ; Ma Z. Chem. Mater. 2009, 21, 4977.
doi: 10.1021/cm902357m |
30 |
Lu Y. ; Ren Y. ; Wang L. ; Wang X. ; Li C. Polymer 2009, 50, 2035.
doi: 10.1016/j.polymer.2009.02.026 |
31 |
Wang Z. ; Zhang L. ; Liu J. ; Jiang H. ; Li C. Nanoscale 2018, 10, 10691.
doi: 10.1039/C8NR01495G |
32 |
Wang Y. ; Zhou W. ; Kang Q. ; Chen J. ; Li Y. ; Feng X. ; Wang D. ; Ma Y. ; Huang W. ACS Appl. Mater. Interfaces 2018, 10, 27001.
doi: 10.1021/acsami.8b06710 |
33 |
Lin F. W. ; Xu X. L. ; Wan L. S. ; Wu J. ; Xu Z. K. RSC Adv. 2015, 5, 30472.
doi: 10.1039/C5RA01605C |
34 |
Mao Y. ; Mei Z. ; Wen J. ; Li G. ; Tian Y. ; Zhou B. ; Tian Y. Sens. Actuators B 2018, 257, 944.
doi: 10.1016/j.snb.2017.11.042 |
35 |
Cao T. T. ; Modigunta J. K. R. ; Male U. ; Huh D. S. Adv. Mater. Interfaces 2018, 5, 1801174.
doi: 10.1002/admi.201801174 |
36 |
Wan L. S. ; Lv J. ; Ke B. B. ; Xu Z. K. ACS Appl. Mater. Interfaces 2010, 2, 3759.
doi: 10.1021/am1009277 |
37 |
Zhou H. J. ; Yang G. W. ; Zhang Y. Y. ; Xu Z. K. ; Wu G. P. ACS Nano 2018, 12, 11471.
doi: 10.1021/acsnano.8b06521 |
38 |
Wan L. S. ; Li J. W. ; Ke B. B. ; Xu Z. K. J. Am. Chem. Soc. 2012, 134, 95.
doi: 10.1021/ja2092745 |
39 |
Zhang C. ; Wang X. ; Min K. ; Lee D. ; Wei C. ; Schulhauser H. ; Gao H. Macromol. Rapid. Commun. 2014, 35, 221.
doi: 10.1002/marc.201300581 |
40 |
Yin H. Y. ; Feng Y. J. ; Billon L. Chem. -Eur. J. 2018, 24, 425.
doi: 10.1002/chem.201704369 |
41 |
Wu B. H. ; Wu L. W. ; Gao K. ; Chen S. H. ; Xu Z. K. ; Wan L. S. J. Phys. Chem. C 2018, 122, 3926.
doi: 10.1021/acs.jpcc.7b12286 |
42 |
Zhang L. ; Chen L. ; Liu S. X. ; Gong J. ; Tang Q. ; Su Z. M. Dalton Trans. 2018, 47, 105.
doi: 10.1039/C7DT03201C |
43 |
Benoot N. ; Marcasuzaa P. ; Pessoni L. ; Chasvised S. ; Reynaud S. ; Bousquet A. ; Billon L. Soft Matter 2018, 14, 4874.
doi: 10.1039/C8SM00137E |
44 |
Ji E. ; Pellerin V. ; Ehrenfeld F. ; Laffore A. ; Bousquet A. ; Billon L. Chem. Commun. 2017, 53, 1876.
doi: 10.1039/C6CC09898C |
45 |
Wu B. H. ; Zhang C. ; Zheng N. ; Wu L. W. ; Xu Z. K. ; Wan L. S. ACS Appl. Mater. Interfaces 2019, 1, 47.
doi: 10.1021/acsapm.8b00031 |
46 |
Yin H.Y ; Bulteau A. L. ; Feng Y. J. ; Billon L. Adv. Mater. Interfaces 2016, 3, 1500623.
doi: 10.1002/admi.201500623 |
47 |
Bunz U. H. F. Adv. Mater. 2006, 18, 973.
doi: 10.1002/adma.200501131 |
48 |
Bai H. ; Du C. ; Zhang A. ; Li L. Angew. Chem. Int. Ed. 2013, 52, 12240.
doi: 10.1002/anie.201303594 |
49 |
Zhang A. ; Bai H. ; Li L. Chem. Rev. 2015, 115, 9801.
doi: 10.1021/acs.chemrev.5b00069 |
50 |
Wan L. S. ; Zhu L. W. ; Ou Y. ; Xu Z. K. Chem. Commun. 2014, 50, 4024.
doi: 10.1039/C3CC49826C |
51 |
Muñoz-Bonilla A. ; Fernández-García M. ; Rodríguez-Hernández J. Prog. Polym. Sci. 2014, 39, 510.
doi: 10.1016/j.progpolymsci.2013.08.006 |
52 |
Escale P. ; Save M. ; Billon L. ; Ruokolainen J. ; Rubatat L. Soft Matter 2016, 12, 790.
doi: 10.1039/C5SM01774B |
53 |
Escale P. ; Save M. ; Lapp A. ; Rubatat L. ; Billon L. Soft Matter 2010, 6, 3202.
doi: 10.1039/C0SM00029A |
54 |
Ghannam L. ; Manguian M. ; François J. ; Billon L. Soft Matter 2007, 3, 1492.
doi: 10.1039/B710282H |
55 |
De Leon A. S. ; Malhotra S. ; Molina M. ; Calderon M. ; Munoz-Bonilla A. ; Rodriguez-Hernandez J. Polym. Chem. 2016, 7, 4112.
doi: 10.1039/C6PY00601A |
56 |
Zhang Z. ; Hughes T. C. ; Gurr P. A. ; Blencowe A. ; Uddin H. ; Hao X. ; Qiao G. G. Polymer 2013, 54, 4446.
doi: 10.1016/j.polymer.2013.06.033 |
57 |
Wu B. H. ; Zhu L. W. ; Ou Y. ; Tang W. ; Wan L. S. ; Xu Z. K. J. Phys. Chem. C 2015, 119, 1971.
doi: 10.1021/jp5119212 |
58 |
Fei B. ; Lu D. L. ; Shen Q. J. Adhes. Sci. Technol. 2018, 32, 1027.
doi: 10.1080/01694243.2017.1393918 |
59 |
Yabu H. ; Hirai Y. ; Kojima M. ; Shimomura M. Chem. Mater. 2009, 21, 1787.
doi: 10.1021/cm803476m |
60 |
Fukuhira Y. ; Yabu H. ; Ijiro K. ; Shimomura M. Soft Matter 2009, 5, 2037.
doi: 10.1039/B821183C |
61 |
Cui L. ; Li B. ; Han Y. Langmuir 2007, 23, 3349.
doi: 10.1021/la061769d |
62 |
Cheng C. X. ; Tian Y. ; Shi Y. Q. ; Tang R. P. ; Xi F. Langmuir 2005, 21, 6576.
doi: 10.1021/la050187d |
63 |
Xu W. Z. ; Kadla J. F. Langmuir 2012, 29, 727.
doi: 10.1021/la303835e |
64 |
Jang J. H. ; Orbán M. ; Wang S. ; Huh D. S. Phys. Chem. Chem. Phys. 2014, 16, 25296.
doi: 10.1039/C4CP03083D |
65 |
Chen S. ; Lu X. ; Zhu D. ; Lu Q. Soft Matter 2015, 11, 7420.
doi: 10.1039/C5SM01769F |
66 |
Min E. H. ; Ting S. R. S. ; Billon L. ; Stenzel M. H. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3440.
doi: 10.1002/pola.24129 |
67 |
Hernandez-Guerrero M. ; Min E. ; Barner-Kowollik C. ; Muller A. H. E. ; Stenzel M. H. J. Mater. Chem. 2008, 18, 4718.
doi: 10.1039/B807495J |
68 |
Pan Y. V. ; Wesley R. A. ; Luginbuhl R. ; Denton D. D. ; Ratner B. D. Biomacromolecules 2001, 2, 32.
doi: 10.1021/bm0000642 |
69 |
Hirvonen S. P. ; Rossi T. ; Karesoja M. ; Karjalainen E. ; Tenhu H. Colloid. Polym. Sci. 2015, 293, 2957.
doi: 10.1007/s00396-015-3693-6 |
70 |
Nykänen A. ; Hirvonen S. P. ; Tenhu H. ; Mezzenga R. ; Ruokolainen J. Polym. Int. 2014, 63, 37.
doi: 10.1002/pi.4559 |
71 |
Zhou Y. ; Huang J. ; Sun W. ; Ju Y. ; Yang P. ; Ding L. ; Chen Z. R. ; Kornfield J. A. ACS Appl. Mater. Interfaces 2017, 9, 4177.
doi: 10.1021/acsami.6b13525 |
72 |
Wang C. ; Mao Y. ; Wang D. ; Qu Q. ; Yang G. ; Hu X. J. Mater. Chem. 2008, 18, 683.
doi: 10.1039/B715520D |
73 |
Escale P. ; Van Camp W. ; Du Prez F. ; Rubatat L. ; Billon L. ; Save M. Polym. Chem. 2013, 4, 4710.
doi: 10.1039/C3PY00643C |
74 |
Escalé P. ; Rubatat L. ; Derail C. ; Save M. ; Billon L. Macromol. Rapid. Comm. 2011, 32, 1072.
doi: 10.1002/marc.201100296 |
75 |
Marcasuzaa P. ; Pearson S. ; Bosson K. ; Pessoni L. ; Dupin J. C. ; Billon L. Chem. Commun. 2018, 54, 13068.
doi: 10.1039/C8CC05333B |
76 |
Yin H. Y. ; Feng Y. J. ; Liu H. B. ; Mu M. ; Fei C. H. Langmuir 2014, 30, 9911.
doi: 10.1021/la501461n |
77 |
Jochum F. D. ; Theato P. Chem. Soc. Rev. 2013, 42, 7468.
doi: 10.1039/C2CS35191A |
78 |
Li L. ; Chen C. ; Li J. ; Zhang A. ; Liu X. ; Xu B. ; Gao S. ; Jin G. ; Ma Z. J. Mater. Chem. 2009, 19, 2789.
doi: 10.1039/B820279F |
79 |
Wang W. ; Du C. ; Wang X. ; He X. ; Lin J. ; Li L. ; Lin S. Angew. Chem. Int. Ed. 2014, 53, 12116.
doi: 10.1002/anie.201407230 |
80 |
Wei W. ; Dingfeng S. ; Xiao L. ; Yuan Y. ; Jiaping L. ; Aurelia W. ; Jiwoo Y. ; Lin W. Z. ; Won H. S. ; Zhiqun L. ; et al Angew. Chem. Int. Ed. 2018, 57, 2139.
doi: 10.1002/anie.201712100 |
81 |
Wang W. ; Yao Y. ; Luo T. ; Chen L. ; Lin J. ; Li L. ; Lin S. ACS Appl. Mater. Interfaces 2017, 9, 4223.
doi: 10.1021/acsami.6b14024 |
82 |
Wei W. ; Fei G. ; Yuan Y. ; Shaoliang L. Chin. J. Polym. Sci. 2018, 36, 297.
doi: 10.1007/s10118-018-2087-x |
83 |
Xu Y. Y. ; Wang W. ; Chen J. H. ; Lin S. L. Chin. J. Org. Chem. 2018, 38, 2161.
doi: 10.6023/cjoc201803037 |
徐悦莹; 王伟; 陈健壮; 林绍梁. 有机化学, 2018, 38, 2161.
doi: 10.6023/cjoc201803037 |
|
84 |
Cui L. ; Xuan Y. ; Li X. ; Ding Y. ; Li B. ; Han Y. Langmuir 2005, 21, 11696.
doi: 10.1021/la051376z |
85 |
Cui L. ; Peng J. ; Ding Y. ; Li X. ; Han Y. Polymer 2005, 46, 5334.
doi: 10.1016/j.polymer.2005.04.018 |
86 |
Chen L. ; Liu R. ; Hao X. ; Yan Q. Angew. Chem. Int. Ed. 2019, 58, 264.
doi: 10.1002/anie.201812365 |
87 |
Jie K. ; Zhou Y. ; Yao Y. ; Shi B. ; Huang F. J. Am. Chem. Soc. 2015, 137, 10472.
doi: 10.1021/jacs.5b05960 |
88 |
Yin H.Y ; Liu H. B. ; Wang W. ; Feng Y. J. Langmuir 2015, 31, 12260.
doi: 10.1021/acs.langmuir.5b02831 |
89 |
Su X. ; Cunningham M. F. ; Jessop P. G. Chem. Commun. 2013, 49, 2655.
doi: 10.1039/C3cc37816k |
90 |
Jessop P. G. ; Mercer S. M. ; Heldebrant D. J. Energy Environ. Sci. 2012, 5, 7240.
doi: 10.1039/C2ee02912j |
91 |
De León A. S. ; Molina M. ; Wedepohl S. ; Muñoz-Bonilla A. ; Rodríguez-Hernández J. ; Calderón M. Langmuir 2016, 32, 1854.
doi: 10.1021/acs.langmuir.5b04166 |
92 |
Heng L. ; Li J. ; Li M. ; Tian D. ; Fan L. Z. ; Jiang L. ; Tang B. Z. Adv. Funct. Mater. 2014, 24, 7241.
doi: 10.1002/adfm.201401342 |
93 |
Yu X. ; Xie D. ; Lan H. ; Li Y. ; Zhen X. ; Ren J. ; Yi T. J. Mater. Chem. C 2017, 5, 5910.
doi: 10.1039/C7TC01331K |
[1] | Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212006-0. |
[2] | Yaoyu Liu, Yuchen Wang, Biying Liu, Mahmoud Amer, Kai Yan. Cobalt-Vanadium Layered Double Hydroxides Nanosheets as High-Performance Electrocatalysts for Urea Oxidation Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205028-0. |
[3] | Huimei Duan, Huijuan Wang, Weixin Huang. Influence of Polyvinylpyrrolidone Capping Ligands on Electrocatalytic Oxidation of Methanol and Ethanol over Palladium Nanocrystal Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2003005-. |
[4] | Fanyang Huang, Yulin Jie, Xinpeng Li, Yawei Chen, Ruiguo Cao, Genqiang Zhang, Shuhong Jiao. Correlation between Li Plating Morphology and Reversibility of Li Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008081-. |
[5] | Jing Zhang, Lina Wang, Xiaofei Chen, Yufeng Wang, Chengyan Niu, Lixin Wu, Zhiyong Tang. Redox-Regulated Dynamic Self-Assembly of a Lindqvist-Type Polyoxometalate Complex [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912002-. |
[6] | Ming Zhang, Fengqi Zhao, Yanjing Yang, Hui Li, Jiankan Zhang, Wenzhe Ma, Hongxu Gao, Na Li. Shape-Dependent Catalytic Activity of Nano-Fe2O3 on the Thermal Decomposition of TKX-50 [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1904027-. |
[7] | Xinjie Luo, Xi Zhang, Yujun Feng. Liquid Marbles: Fabrication, Physical Properties, and Applications [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910007-. |
[8] | Baixian Wang,Qifei Wang,Jiancheng Di,Jihong Yu. Zeolite-Coated Anti-Biofouling Mesh Film for Efficient Oil-Water Separation [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906044-. |
[9] | Dandan CAO, Rong LÜ, Anchi YU. Preparation and Characterization of Carbon Nitride Film with High Optical Quality [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 442-450. |
[10] | Zhe WANG,Kangle JIA,Tongqing LIU,Junwen HU,Xuefeng LI,Jinfeng DONG. pH and Light Reconfigured Complex Emulsions by Stimuli-Responsive Surfactants [J]. Acta Phys. -Chim. Sin., 2019, 35(1): 84-91. |
[11] | Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991. |
[12] | Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951. |
[13] | Wentao LI,Jiale YONG,Qing YANG,Feng CHEN,Yao FANG,Xun HOU. Oil-Water Separation Based on the Materials with Special Wettability [J]. Acta Phys. -Chim. Sin., 2018, 34(5): 456-475. |
[14] | Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene [J]. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406. |
[15] | Dan DENG,Erjun ZHOU,Zhixiang WEI. Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1239-1249. |
|