Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2008081.doi: 10.3866/PKU.WHXB202008081
Special Issue: Lithium Metal Anodes
• ARTICLE • Previous Articles Next Articles
Fanyang Huang, Yulin Jie, Xinpeng Li, Yawei Chen, Ruiguo Cao, Genqiang Zhang, Shuhong Jiao()
Received:
2020-08-27
Accepted:
2020-09-28
Published:
2020-10-19
Contact:
Shuhong Jiao
E-mail:jiaosh@ustc.edu.cn
About author:
Jiao Shuhong. E-mail:jiaosh@ustc.edu.cn; Tel.: +86-551-63601807Supported by:
Fanyang Huang, Yulin Jie, Xinpeng Li, Yawei Chen, Ruiguo Cao, Genqiang Zhang, Shuhong Jiao. Correlation between Li Plating Morphology and Reversibility of Li Metal Anode[J]. Acta Phys. -Chim. Sin. 2021, 37(1), 2008081. doi: 10.3866/PKU.WHXB202008081
Table 1
Main chemical reagents."
Reagent | Parameters | Company |
1 mol·L-1 LiPF6 in ethylene carbonate/dimethyl carbonate (1 : 1, V/V) | / | DoDoChem |
1 mol·L-1 LiTFSI in 1, 3-dioxolane/dimethoxyethane (1 : 1, V/V) + 2% (w) LiNO3 | / | DoDoChem |
Fluoroethylene carbonate | ≥ 99.95% | DoDoChem |
Dimethoxyethane | ≥ 99.95% | DoDoChem |
Lithium bis(fluorosulfonyl)imide | ≥ 99.8% | DoDoChem |
Li foil | Thickness: 450 μm | DoDoChem |
CH3CH2OH | ≥ 99.7% | General-Reagent |
CH3COCH3 | ≥ 99.5% | Sinopharm Chemical Reagent |
1 |
Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
doi: 10.1038/451652a |
2 |
Cano Z. P. ; Banham D. ; Ye S. ; Hintennach A. ; Lu J. ; Fowler M. ; Chen Z. W. Nat. Energy 2018, 3, 279.
doi: 10.1038/s41560-018-0108-1 |
3 |
Choi J. W. ; Aurbach D. Nat. Rev. Mater. 2016, 1, 16013.
doi: 10.1038/natrevmats.2016.13 |
4 |
Pathak R. ; Chen K. ; Gurung A. ; Reza K. M. ; Bahrami B. ; Pokharel J. ; Baniya A. ; He W. ; Wu F. ; Zhou Y. ; et al Nat. Commun. 2020, 11, 93.
doi: 10.1038/s41467-019-13774-2 |
5 |
Yu X. ; Wang L. ; Ma J. ; Sun X. ; Zhou X. ; Cui G. Adv. Energy Mater. 2020, 10, 1903939.
doi: 10.1002/aenm.201903939 |
6 |
Lim H. D. ; Lee B. ; Bae Y. ; Park H. ; Ko Y. ; Kim H. ; Kim J. ; Kang K. Chem. Soc. Rev. 2017, 46, 2873.
doi: 10.1039/C6CS00929H |
7 |
Asadi M. ; Sayahpour B. ; Abbasi P. ; Ngo A. T. ; Karis K. ; Jokisaari J. R. ; Liu C. ; Narayanan B. ; Gerard M. ; Yasaei P. ; et al Nature 2018, 555, 502.
doi: 10.1038/nature25984 |
8 |
Jung J. W. ; Cho S. H. ; Nam J. S. ; Kim I. D. Energy Storage Mater. 2020, 24, 512.
doi: 10.1016/j.ensm.2019.07.006 |
9 |
Yin Y. X. ; Xin S. ; Guo Y. G. ; Wan L. J. Angew. Chem. Int. Ed. 2013, 52, 13186.
doi: 10.1002/anie.201304762 |
10 |
Manthiram A. ; Fu Y. ; Chung S. H. ; Zu C. ; Su Y. S. Chem. Rev. 2014, 114, 11751.
doi: 10.1021/cr500062v |
11 |
Seh Z. W. ; Sun Y. ; Zhang Q. ; Cui Y. Chem. Soc. Rev. 2016, 45, 5605.
doi: 10.1039/c5cs00410a |
12 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
13 |
Sun Y. ; Liu N. ; Cui Y. Nat. Energy 2016, 1, 16071.
doi: 10.1038/nenergy.2016.71 |
14 | Liu F. F. ; Zhang Z. W. ; Ye S. F. ; Yao Y. ; Yu Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021. |
刘凡凡; 张志文; 叶淑芬; 姚雨; 余彦. 物理化学学报, 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021 |
|
15 |
Duan H. ; Yin Y. X. ; Shi Y. ; Wang P. F. ; Zhang X. D. ; Yang C. P. ; Shi J. L. ; Wen R. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2018, 140, 82.
doi: 10.1021/jacs.7b10864 |
16 |
Jiao S. ; Zheng J. ; Li Q. ; Li X. ; Engelhard M. H. ; Cao R. ; Zhang J. G. ; Xu W. Joule 2018, 2, 110.
doi: 10.1016/j.joule.2017.10.007 |
17 |
Yan C. ; Cheng X. B. ; Yao Y. X. ; Shen X. ; Li B. Q. ; Li W. J. ; Zhang R. ; Huang J. Q. ; Li H. ; Zhang Q. Adv. Mater. 2018, 30, e1804461.
doi: 10.1002/adma.201804461 |
18 |
Chen L. ; Fan X. ; Ji X. ; Chen J. ; Hou S. ; Wang C. Joule 2019, 3, 732.
doi: 10.1016/j.joule.2018.11.025 |
19 |
Wood K. N. ; Noked M. ; Dasgupta N. P. ACS Energy Lett. 2017, 2, 664.
doi: 10.1021/acsenergylett.6b00650 |
20 |
Pang Q. ; Liang X. ; Shyamsunder A. ; Nazar L. F. Joule 2017, 1, 871.
doi: 10.1016/j.joule.2017.11.009 |
21 |
Ye H. ; Yin Y. X. ; Zhang S. F. ; Shi Y. ; Liu L. ; Zeng X. X. ; Wen R. ; Guo Y. G. ; Wan L. J. Nano Energy 2017, 36, 411.
doi: 10.1016/j.nanoen.2017.04.056 |
22 |
Zhang Y. ; Qian J. ; Xu W. ; Russell S. M. ; Chen X. ; Nasybulin E. ; Bhattacharya P. ; Engelhard M. H. ; Mei D. ; Cao R. ; et al Nano Lett. 2014, 14, 6889.
doi: 10.1021/nl5039117 |
23 |
Jie Y. ; Liu X. ; Lei Z. ; Wang S. ; Chen Y. ; Huang F. ; Cao R. ; Zhang G. ; Jiao S. Angew. Chem. Int. Ed. 2020, 59, 3505.
doi: 10.1002/anie.201914250 |
24 |
Zheng G. ; Lee S. W. ; Liang Z. ; Lee H. W. ; Yan K. ; Yao H. ; Wang H. ; Li W. ; Chu S. ; Cui Y. Nat. Nanotechnol. 2014, 9, 618.
doi: 10.1038/nnano.2014.152 |
25 |
Lan X. ; Ye W. ; Zheng H. ; Cheng Y. ; Zhang Q. ; Peng D. L. ; Wang M. S. Nano Energy 2019, 66, 104178.
doi: 10.1016/j.nanoen.2019.104178 |
26 |
Li Y. ; Li Y. ; Pei A. ; Yan K. ; Sun Y. ; Wu C. L. ; Joubert L. M. ; Chin R. ; Koh A. L. ; Yu Y. ; et al Science 2017, 358, 506.
doi: 10.1126/science.aam6014 |
27 |
Li Y. ; Huang W. ; Li Y. ; Pei A. ; Boyle D. T. ; Cui Y. Joule 2018, 2, 2167.
doi: 10.1016/j.joule.2018.08.004 |
28 |
Wang X. ; Zhang M. ; Alvarado J. ; Wang S. ; Sina M. ; Lu B. ; Bouwer J. ; Xu W. ; Xiao J. ; Zhang J. G. ; et al Nano Lett. 2017, 17, 7606.
doi: 10.1021/acs.nanolett.7b03606 |
29 |
Cao X. ; Ren X. ; Zou L. ; Engelhard M. H. ; Huang W. ; Wang H. ; Matthews B. E. ; Lee H. ; Niu C. ; Arey B. W. ; et al Nat. Energy 2019, 4, 796.
doi: 10.1038/s41560-019-0464-5 |
30 |
Pei A. ; Zheng G. ; Shi F. ; Li Y. ; Cui Y. Nano Lett. 2017, 17, 1132.
doi: 10.1021/acs.nanolett.6b04755 |
31 |
Chen X. ; Lai J. ; Shen Y. ; Chen Q. ; Chen L. Adv. Mater. 2018, 30, e1802490.
doi: 10.1002/adma.201802490 |
32 |
Wang S. ; Liu Q. ; Zhao C. ; Lv F. ; Qin X. ; Du H. ; Kang F. ; Li B. Energy Environ. Mater. 2018, 1, 28.
doi: 10.1002/eem2.12002 |
33 |
Zhao W. ; Song W. ; Cheong L. Z. ; Wang D. ; Li H. ; Besenbacher F. ; Huang F. ; Shen C. Ultramicroscopy 2019, 204, 34.
doi: 10.1016/j.ultramic.2019.05.004 |
34 |
Li N. W. ; Shi Y. ; Yin Y. X. ; Zeng X. X. ; Li J. Y. ; Li C. J. ; Wan L. J. ; Wen R. ; Guo Y. G. Angew. Chem. Int. Ed. 2018, 57, 1505.
doi: 10.1002/anie.201710806 |
35 |
Aurbach D. J. Electrochem. Soc. 1997, 144, 3355.
doi: 10.1149/1.1838018 |
36 |
Aurbach D. ; Cohen Y. J. Electrochem. Soc. 1996, 143, 3525.
doi: 10.1149/1.1837248 |
37 |
Han Y. ; Jie Y. ; Huang F. ; Chen Y. ; Lei Z. ; Zhang G. ; Ren X. ; Qin L. ; Cao R. ; Jiao S. Adv. Funct. Mater. 2019, 29, 1904629.
doi: 10.1002/adfm.201904629 |
38 |
Chen S. ; Zheng J. ; Mei D. ; Han K. S. ; Engelhard M. H. ; Zhao W. ; Xu W. ; Liu J. ; Zhang J. G. Adv. Mater. 2018, 30, 1706102.
doi: 10.1002/adma.201706102 |
39 |
Shi F. ; Pei A. ; Vailionis A. ; Xie J. ; Liu B. ; Zhao J. ; Gong Y. ; Cui Y. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 12138.
doi: 10.1073/pnas.1708224114 |
40 |
Qian J. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun. 2015, 6, 6362.
doi: 10.1038/ncomms7362 |
41 |
Yu Z. ; Wang H. ; Kong X. ; Huang W. ; Tsao Y. ; Mackanic D. G. ; Wang K. ; Wang X. ; Huang W. ; Choudhury S. ; et al Nat. Energy 2020, 5, 526.
doi: 10.1038/s41560-020-0634-5 |
42 |
Adams B. D. ; Zheng J. ; Ren X. ; Xu W. ; Zhang J. G. Adv. Energy Mater. 2018, 8, 1702097.
doi: 10.1002/aenm.201702097 |
43 |
Jie Y. ; Ren X. ; Cao R. ; Cai W. ; Jiao S. Adv. Funct. Mater. 2020, 30, 1910777.
doi: 10.1002/adfm.201910777 |
44 |
Xu K. Chem. Rev. 2004, 104, 4303.
doi: 10.1021/cr030203g |
45 |
Wang J. ; Huang W. ; Pei A. ; Li Y. ; Shi F. ; Yu X. ; Cui Y. Nature Energy 2019, 4, 664.
doi: 10.1038/s41560-019-0413-3 |
46 |
Yan K. ; Wang J. ; Zhao S. ; Zhou D. ; Sun B. ; Cui Y. ; Wang G. Angew. Chem. Int. Ed. 2019, 58, 11364.
doi: 10.1002/anie.201905251 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[3] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[4] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[5] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[6] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[7] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[8] | Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211005-0. |
[9] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[10] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[11] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[12] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[13] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[14] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[15] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
|