Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (6): 1905081.doi: 10.3866/PKU.WHXB201905081
Special Issue: Thermal Analysis Kinetics and Thermokinetics
Previous Articles Next Articles
Yucheng He,Kefeng Xie,Youhao Wang,Dongshan Zhou,Wenbing Hu*()
Received:
2019-05-29
Accepted:
2019-08-02
Published:
2019-12-18
Contact:
Wenbing Hu
E-mail:wbhu@nju.edu.cn
Supported by:
Yucheng He, Kefeng Xie, Youhao Wang, Dongshan Zhou, Wenbing Hu. Characterization of Polymer Crystallization Kinetics via Fast-Scanning Chip-Calorimetry[J]. Acta Physico-Chimica Sinica 2020, 36(6), 1905081. doi: 10.3866/PKU.WHXB201905081
Fig 4
Melting curves of crystallization on cooling of Nylon-6 (PA) after various erasing history temperatures. Reproduced with permission from Macromol. Chem. Phys., Wiley 42.PA were heatedat 6000 K∙s−1 after cooling at −40 K∙s−1 from a stay of 0.2 s at various high temperatures between 180 and 250 ℃. "
Fig 10
(a) Heating curves of annealed iPB-1; (b) enthalpy of relaxation and enthalpy of cold-crystallization as a function ofthe time of annealing the glass (right). Reprinted with permission from Ref. 73. Copyright (2013)American Chemistry Society.Apparent heat capacity of iPB-1 as a function of temperature, measuredon heating at 1000 K∙s−1 after annealing initiallyglassy samples for different time between0 s (bold black curves) and 10000 s (bold blue curves) at 243 K. Enthalpy of relaxation (upper data sets, triangles)and enthalpy of cold-crystallization(lower data sets, squares) as a function of the time of annealing the glass (right)."
Fig 11
POM morphology of PLLA crystallized at 120 ℃ for 10 min after annealing at low temperature with different condition. Reproduced with permission from Macromol. Chem. Phys., Wiley 81. The melt annealed at low temperature ranging from 50 to 70 ℃ (left to right column) for staying time between 2 and 1000 min (top to bottom row). The temperature program of FSC at bottom left shows Tammann's nuclei development method. The scaling bar corresponds a distance of 100 µm."
Fig 12
(a) Melting curves of PLLA crystals after annealed at 152 ℃ for various periods. AFM height images of the nascent crystals (b) and their morphologies annealed at 152 ℃ for 1000 s (c). Reproduced with permission from polymer, Elsevier80. The semi-crystalline samples were prepared isothermally crystallized at 90 ℃ for 600 s."
1 | Hu W. Principles of Polymer Crystallization Beijing, China: Chemical Industry Press, 2013. |
胡文兵. 高分子结晶学原理, 北京: 化学工业出版社, 2013. | |
2 | Wunderlich B. Thermal Analysis of Polymeric Materials Berlin, Germany: Springer, 2005. |
3 |
Wunderlich B. Prog. in Polym. Sci. 2003, 28 (3), 383.
doi: 10.1016/S0079-6700(02)00085-0 |
4 |
Schick C. Anal. Bioanal. Chem. 2009, 395 (6), 1589.
doi: 10.1007/s00216-009-3169-y |
5 |
Kamal M. R. ; Chu E. Polym. Eng. Sci. 1983, 23 (1), 27.
doi: 10.1002/pen.760230107 |
6 |
Toda A. ; Androsch R. ; Schick C. Polymer 2016, 91, 239.
doi: 10.1016/j.polymer.2016.03.038 |
7 |
Li Z. ; Zhou D. ; Hu W. Acta Polym. Sin. 2016, 9, 1179.
doi: 10.11777/j.issn1000-3304.2016.16058 |
李照磊; 周东山; 胡文兵. 高分子学报, 2016, 9, 1179.
doi: 10.11777/j.issn1000-3304.2016.16058 |
|
8 | Di Lorenzo M. L., Androsch R., Rhoades A. M., Righetti M. C., Analysis of Polymer Crystallization by Calorimetry. In Handbook of Thermal Analysis and Calorimetry, Vyazovkin S., Koga N., Schick C., Eds.; Elsevier Science B.V.: Amsterdam, Netherlands, 2018; Vol. 6, p. 253. |
9 |
Gao Y. ; Zhao B. ; Vlassak J. J. ; Schick C. Prog. Mater. Sci. 2019, 104, 53.
doi: 10.1016/j.pmatsci.2019.04.001 |
10 |
Mathot V. B. F. Polym. Int. 2019, 68 (2), 179.
doi: 10.1002/pi.5671 |
11 |
Santos de Souza F. ; Gomes Barreto A. P. ; Macêdo R. O. J. Therm. Anal. Calorim. 2001, 64 (2), 739.
doi: 10.1023/A:1011548512655 |
12 |
Becker R. ; Döring W. Ann. Phys. 1935, 416 (8), 719.
doi: 10.1002/andp.19354160806 |
13 |
Umemoto S. ; Kobayashi N. ; Okui N. J. Macromol. Sci. Phys. 2002, B41 (4–6), 923.
doi: 10.1081/mb-120013074 |
14 |
Denlinger D. W. ; Abarra E. N. ; Allen K. ; Rooney P. W. ; Messer M. T. ; Watson S. K. ; Hellman F. Rev.Sci. Instrum. 1994, 65 (4), 946.
doi: 10.1063/1.1144925 |
15 |
Allen L. H. ; Ramanath G. ; Lai S. L. ; Ma Z. ; Lee S. ; Allman D. D. J. ; Fuchs K. P. Appl. Phys. Lett. 1994, 64 (4), 417.
doi: 10.1063/1.111116 |
16 |
Lai S. L. ; Ramanath G. ; Allen L. H. ; Infante P. ; Ma Z. Appl. Phys. Lett. 1995, 67 (9), 1229.
doi: 10.1063/1.115016 |
17 |
Lai S. L. ; Guo J. Y. ; Petrova V. ; Ramanath G. ; Allen L. H. Phys. Rev. Lett. 1996, 77 (1), 99.
doi: 10.1103/PhysRevLett.77.99 |
18 |
Efremov M. Y. ; Schiettekatte F. ; Zhang M. ; Olson E. A. ; Kwan A. T. ; Berry R. S. ; Allen L. H. Phys. Rev. Lett. 2000, 85 (17), 3560.
doi: 10.1103/PhysRevLett.85.3560 |
19 |
Efremov M. Y. ; Olson E. A. ; Zhang M. ; Lai S. L. ; Schiettekatte F. ; Zhang Z. S. ; Allen L. H. Thermochim. Acta 2004, 412 (1), 13.
doi: 10.1016/j.tca.2003.08.019 |
20 |
Efremov M. Y. ; Olson E. A. ; Zhang M. ; Schiettekatte F. ; Zhang Z. ; Allen L. H. Rev. Sci. Instrum. 2004, 75 (1), 179.
doi: 10.1063/1.1633000 |
21 |
de la Rama L. P. ; Hu L. ; Ye Z. ; Efremov M. Y. ; Allen L. H. J. Am. Chem. Soc. 2013, 135 (38), 14286.
doi: 10.1021/ja4059958 |
22 |
Lopeandia A. F. ; Cerdo L. I. ; Clavaguera-Mora M. T. ; Arana L. R. ; Jensen K. F. ; Munoz F. J. ; Rodriguez-Viejo J. Rev. Sci. Instru. 2005, 76 (6), 3959.
doi: 10.1063/1.1921567 |
23 |
Adamovsky S. A. ; Minakov A. A. ; Schick C. Thermochim. Acta 2003, 403 (1), 55.
doi: 10.1016/S0040-6031(03)00182-5 |
24 |
Adamovsky S. ; Schick C. Thermochim. Acta 2004, 415 (1), 1.
doi: 10.1016/j.tca.2003.07.015 |
25 |
Yu J. ; Tang Z. ; Zhang F. ; Wei G. ; Wang L. Chin. Phy. Lett. 2005, 22 (9), 2429.
doi: 10.1088/0256-307X/22/9/080 |
26 | Chen M. ; Du M. ; Jiang J. ; Li D. ; Jiang W. ; Zhuravlev E. ; Zhou D. ; Schick C. ; Xue G. Thermochim. Acta 2011, 526 (1), 58. |
27 |
Jiang J. ; Zhuravlev E. ; Huang Z. ; Wei L. ; Xu Q. ; Shan M. ; Xue G. ; Zhou D. ; Schick C. ; Jiang W. Soft Matter 2013, 9 (5), 1488.
doi: 10.1039/C2SM27012A |
28 |
Wei L. ; Jiang J. ; Shan M. ; Chen W. ; Deng Y. ; Xue G. ; Zhou D. Rev. Sci. Instrum. 2014, 85 (7), 074901.
doi: 10.1063/1.4889882 |
29 | Jiang J., Wei L., Zhou D., Integration of Fast Scanning Calorimetry(FSC) with Microstructural Analysis Techniques. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 361. |
30 |
van Herwaardena S. Procedia Eng. 2010, 5, 464.
doi: 10.1016/j.proeng.2010.09.147 |
31 |
Iervolino E. ; van Herwaarden A. W. ; van Herwaarden F. G. ; van de Kerkhof E. ; van Grinsven P. P. W. ; Leenaers A. C. H. I. ; Mathot V. B. F. ; Sarro P. M. Thermochim. Acta 2011, 522 (1), 53.
doi: 10.1016/j.tca.2011.01.023 |
32 |
Mathot V. ; Pyda M. ; Pijpers T. ; Vanden Poel G. ; van de Kerkhof E. ; van Herwaarden S. ; van Herwaarden F. ; Leenaers A. Thermochim. Acta 2011, 522 (1), 36.
doi: 10.1016/j.tca.2011.02.031 |
33 |
van Herwaarden S. ; Iervolino E. ; van Herwaarden F. ; Wijffels T. ; Leenaers A. ; Mathot V. Thermochim. Acta 2011, 522 (1), 46.
doi: 10.1016/j.tca.2011.05.025 |
34 |
De Santis F. ; Adamovsky S. ; Titomanlio G. ; Schick C. Macromolecules 2006, 39 (7), 2562.
doi: 10.1021/ma052525n |
35 |
De Santis F. ; Adamovsky S. ; Titomanlio G. ; Schick C. Macromolecules 2007, 40 (25), 9026.
doi: 10.1021/ma071491b |
36 |
Kalapat D. ; Tang Q. ; Zhang X. ; Hu W. J. Therm. Anal. Calorim. 2017, 128 (3), 1859.
doi: 10.1007/s10973-017-6095-9 |
37 |
Zhuravlev E. ; Schmelzer J. W. P. ; Wunderlich B. ; Schick C. Polymer 2011, 52 (9), 1983.
doi: 10.1016/j.polymer.2011.03.013 |
38 |
Wang J. ; Li Z. ; Perez R. A. ; Mueller A. J. ; Zhang B. ; Grayson S. M. ; Hu W. Polymer 2015, 63, 34.
doi: 10.1016/j.polymer.2015.02.039 |
39 | Androsch R., Schick C., Di Lorenzo M. L., Kinetics of Nucleation and Growth of Crystals of Poly(L-lactic acid). In Advances in Polymer Science, Springer: New York, USA, 2017; Vol. 279, p. 235. |
40 | Schawe J. E. K., Pogatscher S., Material Characterization by Fast Scanning Calorimetry: Practice and Applications. In Fast Scanning Calorimetry; Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 3. |
41 | Gaur U., Wunderlich B., Advanced Thermal Analysis System(ATHAS) Polymer Heat Capacity Data Bank. In Computer Applications in Applied Polymer Science, American Chemical Society: New York, USA, 1982; Vol. 197, p. 355. |
42 |
He Y. ; Luo R. ; Li Z. ; Lv R. ; Zhou D. ; Lim S. ; Ren X. ; Gao H. ; Hu W. Macromol. Chem. Phys. 2018, 219 (3), 1700385.
doi: 10.1002/macp.201700385 |
43 |
Androsch R. ; Schick C. Adv. Polym. Sci. 2015, 276, 257.
doi: 10.1007/12_2015_325 |
44 |
Jiang X. ; Reiter G. ; Hu W. J. Phys. Chem. B 2016, 120 (3), 566.
doi: 10.1021/acs.jpcb.5b09324 |
45 | Schick C., Androsch R., New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry. In Fast Scanning Calorimetry, Springer International Publishing: Cham, Switzerland, 2016; pp. 463–535. |
46 | Androsch R., Schick C., Crystal Nucleation of Polymers at High Supercooling of the Melt. In Advances in Polymer Science, Springer: New York, USA, 2017; Vol. 276, p. 257. |
47 |
Schick C. ; Androsch R. ; Schmelzer J. W. P. J. Phys. Condens. Matter 2017, 29 (35), 453002.
doi: 10.1088/1361-648X/aa7fe0 |
48 |
Pyda M. ; Nowak-Pyda E. ; Heeg J. ; Huth H. ; Minakov A. A. ; Di Lorenzo M. L. ; Schick C. ; Wunderlich B. J. Polym. Sci. Part B: Polym. Phys. 2006, 44 (9), 1364.
doi: 10.1002/polb.20789 |
49 |
Schawe J. E. K. J. Therm. Anal. Calorim. 2014, 116 (3), 1165.
doi: 10.1007/s10973-013-3563-8 |
50 |
Androsch R. ; Rhoades A. M. ; Stolte I. ; Schick C. Eur. Polym. J. 2015, 66, 180.
doi: 10.1016/j.eurpolymj.2015.02.013 |
51 |
Van Drongelen M. ; Meijer-Vissers T. ; Cavallo D. ; Portale G. ; Poel G. V. ; Androsch R. Thermochim. Acta 2013, 563, 33.
doi: 10.1016/j.tca.2013.04.007 |
52 |
Rhoades A. M. ; Williams J. L. ; Androsch R. Thermochim. Acta 2015, 603, 103.
doi: 10.1016/j.tca.2014.10.020 |
53 |
Cavallo D. ; Gardella L. ; Alfonso G. C. ; Mileva D. ; Androsch R. Polymer 2012, 53 (20), 4429.
doi: 10.1016/j.polymer.2012.08.001 |
54 |
Mileva D. ; Androsch R. ; Cavallo D. ; Alfonso G. C. Eur. Polym. J. 2012, 48 (6), 1082.
doi: 10.1016/j.eurpolymj.2012.03.009 |
55 |
Cai J. ; Luo R. ; Lv R. ; He Y. ; Zhou D. ; Hu W. Eur. Polym. J. 2017, 96, 79.
doi: 10.1016/j.eurpolymj.2017.09.003 |
56 |
Chen Y. ; Chen X. ; Zhou D. ; Shen Q.-D. ; Hu W. Polymer 2016, 84, 319.
doi: 10.1016/j.polymer.2016.01.003 |
57 |
Gradys A. ; Sajkiewicz P. ; Zhuravlev E. ; Schick C. Polymer 2016, 82, 40.
doi: 10.1016/j.polymer.2015.11.020 |
58 |
Chen Y. ; Shen Q.-D. ; Hu W. Polym. Int. 2016, 65 (4), 387.
doi: 10.1002/pi.5066 |
59 | Wunderlich B., Crystal Nucleation, Growth, Annealing. in Macromolecular Physics. Academic Press: New York, NY, USA, 1976; Vol. 2. |
60 |
Long Y. ; Shanks R. A. ; Stachurski Z. H. Prog. Polym. Sci. 1995, 20 (4), 651.
doi: 10.1016/0079-6700(95)00002-W |
61 | Tammann G. Z. Phys. Chem. 1898, 25 (3), 441. |
62 |
Zhuravlev E. ; Schmelzer J. W. P. ; Abyzov A. S. ; Fokin V. M. ; Androsch R. ; Schick C. Cryst. Growth Des. 2015, 15 (2), 786.
doi: 10.1021/cg501600s |
63 |
Androsch R. ; Schick C. ; Rhoades A. M. Macromolecules 2015, 48 (22), 8082.
doi: 10.1021/acs.macromol.5b01912 |
64 |
Okamoto N. ; Oguni M. Solid State Commun. 1996, 99 (1), 53.
doi: 10.1016/0038-1098(96)00139-1 |
65 |
Wurm A. ; Zhuravlev E. ; Eckstein K. ; Jehnichen D. ; Pospiech D. ; Androsch R. ; Wunderlich B. ; Schick C. Macromolecules 2012, 45 (9), 3816.
doi: 10.1021/ma300363b |
66 |
Sánchez M. S. ; Mathot V. B. F. ; Poel G. V. ; Ribelles J. L. G. Macromolecules 2007, 40 (22), 7989.
doi: 10.1021/ma0712706 |
67 |
Androsch R. ; Zhuravlev E. ; Schmelzer J. W. P. ; Schick C. Eur. Polym. J. 2018, 102, 195.
doi: 10.1016/j.eurpolymj.2018.03.026 |
68 | Schmelzer J. W. P. Glass: Selected Properties and Crystallization. Berlin, Germany: Walter de Gruyter, 2014, p. 1. |
69 |
Androsch R. ; Schick C. ; Schmelzer J. W. P. Eur.Polym. J. 2014, 53 (1), 100.
doi: 10.1016/j.eurpolymj.2014.01.012 |
70 |
Stolte I. ; Androsch R. ; Di Lorenzo M. L. ; Schick C. J. Phys. Chem. B 2013, 117 (48), 15196.
doi: 10.1021/jp4093404 |
71 | Hoffman J. D., Davis G. T., Lauritzen J. I., The Rate of Crystallization of Linear Polymers with Chain Folding. In Treatise on Solid State Chemistry: Volume 3 Crystalline and Noncrystalline Solids, Hannay N. B., Ed.; Springer US: Boston, MA, USA, 1976; p. 497. |
72 |
Donth E. J. Non. Cryst. Solids 1982, 53 (3), 325.
doi: 10.1016/0022-3093(82)90089-8 |
73 | Donth E. The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials Berlin, Germany: Springer Science & Business Media, 2013, 48 |
74 |
Chua Y. Z. ; Zorn R. ; Holderer O. ; Schmelzer J. W. P. ; Schick C. ; Donth E. J. Chem. Phys. 2017, 146 (10), 104501.
doi: 10.1063/1.4977737 |
75 |
Rhoades A. M. ; Williams J. L. ; Wonderling N. ; Androsch R. ; Guo J. J. Therm. Anal. Calorim. 2017, 127 (1), 939.
doi: 10.1007/s10973-016-5793-z |
76 |
Rhoades A. M. ; Wonderling N. ; Schick C. ; Androsch R. Polymer 2016, 106, 29.
doi: 10.1016/j.polymer.2016.10.050 |
77 | Baeten D., Cavallo D., Portale G., Androsch R., Mathot V., Goderis B., Combining Fast Scanning Chip Calorimetry with Structural and Morphological Characterization Techniques. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 327. |
78 |
Mollova A. ; Androsch R. ; Mileva D. ; Schick C. ; Benhamida A. Macromolecules 2013, 46 (3), 828.
doi: 10.1021/ma302238r |
79 |
Mileva D. ; Androsch R. ; Zhuravlev E. ; Schick C. Polymer 2012, 53 (18), 3994.
doi: 10.1016/j.polymer.2012.06.045 |
80 |
Lv R. ; He Y. ; Wang J. ; Wang J. ; Hu J. ; Zhang J. ; Hu W. Polymer 2019, 174, 123.
doi: 10.1016/j.polymer.2019.04.061 |
81 |
Androsch R. ; Di Lorenzo M. L. ; Schick C. Macromol. Chem. Phys. 2017, 219 (3), 1700479.
doi: 10.1002/macp.201700479 |
82 |
Schick C. ; Androsch R. Polym. Cryst. 2018, 1 (4), e10036.
doi: 10.1002/pcr2.10036 |
83 |
Janssens V. ; Block C. ; Van Assche G. ; Van Mele B. ; Van Puyvelde P. J. Therm. Anal. Calorim. 2009, 98 (3), 675.
doi: 10.1007/s10973-009-0518-1 |
84 |
Roozemond P. C. ; van Drongelen M. ; Verbelen L. ; Van Puyvelde P. ; Peters G. W. M. Rheol. Acta 2015, 54 (1), 1.
doi: 10.1007/s00397-014-0820-0 |
85 |
Rhoades A. M. ; Gohn A. M. ; Seo J. ; Androsch R. ; Colby R. H. Macromolecules 2018, 51 (8), 2785.
doi: 10.1021/acs.macromol.8b00195 |
86 |
Cebe P. ; Hu X. ; Kaplan D. L. ; Zhuravlev E. ; Wurm A. ; Arbeiter D. ; Schick C. Sci. Rep. 2013, 3, 1130.
doi: 10.1038/srep01130 |
87 |
Gao H. ; Wang J. ; Schick C. ; Toda A. ; Zhou D. ; Hu W. Polymer 2014, 55 (16), 4307.
doi: 10.1016/j.polymer.2014.06.048 |
88 |
Jiang X. ; Li Z. ; Wang J. ; Gao H. ; Zhou D. ; Tang Y. ; Hu W. Thermochim. Acta 2015, 603, 79.
doi: 10.1016/j.tca.2014.04.002 |
89 | Jiang X., Li Z., Gao H., Hu W., Combining Fast-Scan Chip Calorimetry with Molecular Simulations to Investigate Polymer Crystal Melting. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 379. |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[3] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[4] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[5] | Yao Xie, Qitao Zhang, Hongli Sun, Zhenyuan Teng, Chenliang Su. Semiconducting Polymers for Photosynthesis of H2O2: Spatial Separation and Synergistic Utilization of Photoredox Centers [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2301001-. |
[6] | Hang Zhou, Kun Jiao. Carbonene Materials Modified High-Performance Polymer Fibers: Preparation, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2111041-. |
[7] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[8] | Shuai Chen, Jianglei Qin, Jianzhong Du. Cross-Linkable Yet Biodegradable Polymer Films [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2006029-. |
[9] | Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912061-. |
[10] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[11] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-. |
[12] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-. |
[13] | Jianghui Zhao, Maoling Xie, Haiyang Zhang, Ruowei Yi, Chenji Hu, Tuo Kang, Lei Zheng, Ruiguang Cui, Hongwei Chen, Yanbin Shen, Liwei Chen. In Situ Modification Strategy for Development of Room-Temperature Solid-State Lithium Batteries with High Rate Capability [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2104003-. |
[14] | Yuyao Liao, Zhen Fan, Jianzhong Du. Photocrosslinking-Immobilized Polymer Vesicles for Lowering Temperature Triggered Drug Release [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1912053-. |
[15] | Lingshan Chen, Yuanxiu Hong, Shisheng He, Zhen Fan, Jianzhong Du. Poly(ε-caprolactone)-Polypeptide Copolymer Micelles Enhance the Antibacterial Activities of Antibiotics [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1910059-. |
|