Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (8): 2301019.doi: 10.3866/PKU.WHXB202301019
• REVIEW • Previous Articles Next Articles
Qu Zhuoyan1,2, Zhang Xiaoyin1,2, Xiao Ru1,2, Sun Zhenhua1,2,*(), Li Feng1,2,*()
Received:
2023-01-12
Accepted:
2023-02-08
Published:
2023-03-23
Contact:
Sun Zhenhua, Li Feng
E-mail:zhsun@imr.ac.cn;fli@imr.ac.cn
Supported by:
Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin. 2023, 39(8), 2301019. doi: 10.3866/PKU.WHXB202301019
Fig 2
(a) Synthesis of S-DIB polymer. (b) The structure of S-DIB synthesized with different ratios of S8 and DIB. (c) Galvanostatic charge-discharge curves of S-DIB with different sulfur content. (d) 13C NMR spectra of S-DIB with 50% and 90% sulfur content. (e) Synthesis of S-DIB@CNT composite. (f) TEM image of S-DIB@CNT. (g) Cycling performances of S-DIB@CNT and S@CNT at 1C. (h) Molecular structure of Li2S6-r-DIB. (i) Bending test of flexible battery based on Li2S6-r-DIB cathode. (j) Cycling performance of flexible battery under different bending degrees. (a) Adapted with permission from Ref. 46, Copyright 2013, Nature Publishing Group. (b) Adapted with permission from Ref. 47, Copyright 2016, Elsevier Ltd. (c) Adapted with permission from Ref. 48, Copyright 2016, American Chemical Society. (d) Adapted with permission from Ref. 49, Copyright 2018, American Chemical Society. (e–g) Adapted with permission from Ref. 50, Copyright 2016, WILEY-VCH. (h–j) Adapted with permission from Ref. 51, Copyright 2021, American Chemical Society."
Fig 3
(a) Molecular structure changes during the preparation of organic polysulfone nanosheets (OPNS). (b) The structure change of OPNS during the electrochemical process. (c) Schematic of the preparation process of S-BOP and BOP, in which TPTA is hexahydro-1, 3, 5-triphenyl-1, 3, 5-triazine, DHPDS is 4, 4-dihydroxy-diphenyldisulfide, BOP is benzoxazine polymers. (d) Galvanostatic charge-discharge curves of S-BOP and BOP. (e) Cycling performance of S-BOP (0.9 mg∙cm−2) at 1C, (f) Synthesis of SF-CTF. (a, b) Adapted with permission from Ref. 40, Copyright 2019, Elsevier Ltd. (c–e) Adapted with permission from Ref. 60, Copyright 2016, American Chemical Society. (f) Adapted with permission from Ref. 61, Copyright 2016, WILEY-VCH."
Table 1
Electrochemical performance of organosulfur polymers with "solid-liquid-solid" transformation path."
Cathode | Sulfur content/% | Specific capacity/(mAh∙g−1) | Cycle retention/% | Ref. |
S-DIB | 70 | 1225 (0.1C, 167.2 mA∙g−1) | 74.8 (100 cycles) | |
Se-S-DIB | 60–80 | 880 (0.2C, 315.8 mA∙g−1) | 60.0 (100 cycles) | |
S-DIB@CNT | 64 | 1180 (0.1C, 167.5 mA∙g−1) | 98.0 (100 cycles) | |
poly(Li2S6-r-10%DIB) | 43 | 1200 (100.0 mA∙g−1) | 77.9 (120 cycles) | |
BTTPs | 72 | 945.1 (1C, 901.7 mA∙g−1) | 62.6 (300 cycles) | |
3DP-pSG | 75 | 812.8 (50.0 mA∙g−1) | 43.4 (50 cycles) | |
SVE(1:9) | 70 | 1167 (0.1C, 167.5 mA∙g−1) | 90.0 (380 cycles) | |
PTFHQS | 71 | 906 (0.5C, 837.5 mA∙g−1) | 87.0 (600 cycles) | |
semi-IPN C-S copolymer | 70 (C-S copolymer) | 1143 (0.1C, 167.2 mA∙g−1) | 70.0 (500 cycles) | |
AFG/S | 60 | 829.1 (1C) | 84.0 (200 cycles) | |
PEHS | 87 | 774(1C, 1217.0 mA∙g−1) | 70.9 (350 cycles) | |
PPPS-14 | 80 | 559.9 (0.1C, 62.2 mA∙g−1) | 57.9 (100 cycles) | |
STI | 90 | 904 (0.5C, 837.5 mA∙g−1) | 94.0 (350 cycles) | |
S-GSH | 61 | 1022 (1C, 167.5 mA∙g−1) | 87.0 (450 cycles) | |
cp(S-TTCA)@rGO | 82 | 861 (1C, 1672.0 mA∙g−1) | 81.7 (500 cycles) | |
OPNS-72 | 72 | 891(1C, 1670.0 mA∙g−1) | 91.0 (620 cycles) | |
pGPS | 71 | 1045 (1C, 1670.0 mA∙g−1) | 95.3 (1000 cycles) | |
S-BOP | 72 | 1149 (0.05C, 36.0 mA∙g−1) | 92.7 (1000 cycles) | |
SF-CTF | 86 | 1138.2 (0.05C, 50 mA∙g−1) | 81.6 (300 cycles) | |
PDATtSSe | 72 (S and Se) | 700 (200 mA∙g−1) | 92.0 (400 cycles) | |
S-CTF-1 | 62 | 670 (0.05C, 25 mA∙g−1) | 85.8 (300 cycles) | |
SLP | 72 | 1000 (0.5C) | 97.6 (300 cycles) |
Fig 4
(a) Charge-discharge curves of SPAN at different cycles. (b) Molecular structures of SPAN. (c, d) Different reaction mechanisms of SPAN. (e) The reaction process of DSP and TSP revealed by DFT calculations. (f, g) The first charge-discharge curve of DSP/CNT and TSP/CNT at 0.1C. (a) Adapted with permission from Ref. 76, Copyright 2015, American Chemical Society. Adapted with permission from Ref. 73, Copyright 2002, WILEY-VCH. (b-Ⅰ) Adapted with permission from Ref. 75, Copyright 2011, American Chemical Society. (b-Ⅱ) Adapted with permission from Ref. 76, Copyright 2015, American Chemical Society. (b-Ⅲ) Adapted with permission from Ref. 77, Copyright 2019, Elsevier B.V. (c) Adapted with permission from Ref. 77, Copyright 2019, Elsevier B.V. (d) Adapted with permission from Ref. 78, Copyright 2018, American Chemical Society. (e–g) Adapted with permission from Ref. 91, Copyright 2021, Elsevier B.V."
Table 2
Electrochemical performance of different SPAN cathodes."
Cathode | Electrolytes | Discharge capacity/(mAh∙g−1) | Cycle retention/% | Ref. |
Se0.05S0.95@pPAN | Li10GeP2S12 (LGPS) | 840.0 (0.1C, 167.5 mA∙g−1) | 81 (150 cycles) | |
S@PAN/S7Se | 1 mol∙L−1 LiPF6 EC/DMC (1 : 1) + 1% FEC | 1100.0 (100.0 mA∙g−1) | 77 (500 cycles) | |
pPAN-S/GNS | 1 mol∙L−1 LiPF6/EC + DMC | 1500.0 (0.1C, 167.5 mA∙g−1) | 80 (100 cycles) | |
SPAN-CNT5 | 1 mol∙L−1 LiPF6 EC/DMC/DEC (1 : 1 : 1) | 1610.0 (0.2C, 335.0 mA∙g−1) | 87 (200 cycles) | |
Se0.06SPAN | 1 mol∙L−1 LiTFSI DOL/DME (1 : 1) + 2% (w) LiNO3 | 1680.0 (200.0 mA∙g−1) | 77 (800 cycles) | |
S@PAN | MOF-modified 1 mol∙L−1 LiTFSI/DME | 1468.0 (1C, 1672.0 mA∙g−1) | 95 (100 cycles) | |
CoS2-SPAN-CNT | 1 mol∙L−1 LiPF6 EC/DMC/DEC (1 : 1 : 1) | 1799.0 (0.2C) | 69 (100 cycles) | |
Co10-SPAN-CNT | 1 mol∙L−1 LiPF6 EC/DMC/DEC (1 : 1 : 1) | 1357.0 (0.2C, 335.0 mA∙g−1) | 82 (1000 cycles) | |
3DHG/SPAN | 1 mol∙L−1 LiTFSI DME/DOL (1 : 1) + 1% (w) LiNO3 | 1178.9 (0.05C, 83.8 mA∙g−1) | 82 (1500 cycles) |
Fig 5
(a) The redox reaction process of dimethyl trisulfide (DMTS). (b) The structure of PTS@MSGC cathode. (c) The charge-discharge curve of PTS cathode. (d) Schematic of the lithiation process of Py2Sx. (e) The first charge-discharge curve of Py2Sx at 0.1C. (f) The synthesis of 1, 4-bis (diphenylphosphino) tetrasulfide (BDPPTS) and its reaction process and energy distribution under external electric field. (a) Adapted with permission from Ref. 95, Copyright 2016, WILEY-VCH. (b, c) Adapted with permission from Ref. 98, Copyright 2021, WILEY-VCH. (d, e) Adapted with permission from Ref. 99, Copyright 2020, WILEY-VCH. (f) Adapted with permission from Ref. 100, Copyright 2021, Nature Publishing Group."
Table 3
The electrochemical performance of different small organosulfur molecule cathodes."
Cathode | Areal loading/(mg∙cm−2) | Theoretical capacity/(mAh∙g−1) | Specific capacity/(mAh∙g−1) | Ref. |
DMTS | 6.70 | 849.0 | 597 (0.1C, 84.9 mA∙g−1) | |
PTS@MSGC | 6.20 | 570.0 | 330 (0.1C, 57.0 mA∙g−1) | |
PDSe-S | 3.51 | 311.4 | 194 (0.2C, 62.4 mA∙g−1) | |
PDSe-S2 | 3.92 | 427.4 | 241 (0.2C, 85.6 mA∙g−1) | |
1, 2-LBDT | 0.70 | 347.8 | 340 (0.5C, 173.9 mA∙g−1) | |
Py2Sx, 3 ≤ x ≤ 8 | Null | 425.4 | 391 (0.1C, 42.5 mA∙g−1) | |
BDPPTS | 4.50 | 322.8 | 309 (0.1C, 32.3 mA∙g−1) | |
DPTS-Se | Null | 488.2 | 471.1 (0.1C, 48.8 mA∙g−1) |
Fig 6
(a) Schematic of the working mechanism of PESn as a "sulfur container" in a lithium-sulfur battery. (b) Schematic of nucleophilic substitution reaction between DCBQ and lithium polysulfides. (c) Schematic of lithium anode protected by stable inorganic/organic hybrid SEI film. (d) Schematic of BTT as electrolyte additives in a lithium-sulfur battery. (a) Adapted with permission from Ref. 102, Copyright 2020, Wiley-VCH GmbH. (b) Adapted with permission from Ref. 43, Copyright 2021, Elsevier B.V. (c) Adapted with permission from Ref. 103, Copyright 2017, Nature Publishing Group. (d) Adapted with permission from Ref. 104, Copyright 2021, Nature Publishing Group."
Fig 7
(a) Li+ conductivity in PEO, PEI and PES based solid-state electrolytes at different temperatures. (b) The synthesis route and crosslinking structure of M-S-PEGDA. (c) The structure of M-P (EO20-ES). (d) The preparation process of the high-loading cathode-solid-state electrolyte integrated structure. (a) Adapted with permission from Ref. 106, Copyright 2001, Elsevier Science Ltd. (b) Adapted with permission from Ref. 107, Copyright 2020, WILEY-VCH. (c, d) Adapted with permission from Ref. 108, Copyright 2022, WILEY-VCH."
1 | Zheng, Q.; Jian, L.; Xu, Y.; Gao, S.; Liu, T.; Qu, C.; Chen, H.; Li, X. Bulletin of Chinese Academy of Sciences 2022, 37, 529. |
郑琼, 江丽霞, 徐玉杰, 高嵩, 刘涛, 曲超, 陈海生, 李先锋 中国科学院院刊, 2022, 37, 529.
doi: 10.16418/j.issn.1000-3045.20220311001 |
|
2 | hou, Y.; Yang, F.; Yu, X.; Jiang, H. Electric Power 2022, 55, 1. |
周原冰, 杨方, 余潇潇, 江涵 中国电力, 2022, 55, 1.
doi: 10.11930/j.issn.1004-9649.202203003 |
|
3 |
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M Nat. Mater. 2012, 11, 19.
doi: 10.1038/nmat3191 |
4 |
Li, M.; Lu, J.; Chen, Z.; Amine, K Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
5 |
Manthiram, A.; Song, B.; Li, W Energy Storage Mater. 2017, 6, 125.
doi: 10.1016/j.ensm.2016.10.007 |
6 |
Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J Adv. Energy Mater. 2018, 8, 1702028.
doi: 10.1002/aenm.201702028 |
7 |
Xiao, B.; Liu, H.; Liu, J.; Sun, Q.; Wang, B.; Kaliyappan, K.; Zhao, Y.; Banis, M. N.; Liu, Y.; Li, R.; et al. Adv. Mater. 2017, 29, 1703764.
doi: 10.1002/adma.201703764 |
8 |
Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J Angew. Chem. Int. Ed. 2015, 54, 4440.
doi: 10.1002/anie.201409262 |
9 |
Manthiram, A.; Fu, Y.; Chung, S.; Zu, C.; Su, Y Chem. Rev 2014, 114, 11751.
doi: 10.1021/cr500062v |
10 |
Yang, Y.; Zheng, G.; Cui, Y Chem. Soc. Rev. 2013, 42, 3018.
doi: 10.1039/c2cs35256g |
11 |
Liang, J.; Sun, Z.-H.; Li, F.; Cheng, H.-M Energy Storage Mater. 2016, 2, 76.
doi: 10.1016/j.ensm.2015.09.007 |
12 |
Larcher, D.; Tarascon, J.-M Nat. Chem. 2015, 7, 19.
doi: 10.1038/nchem.2085 |
13 |
Ji, X.; Nazar, L. F J. Mater. Chem. 2010, 20, 9821.
doi: 10.1039/b925751a |
14 |
Li, Y.; Fan, J.; Zhang, J.; Yang, J.; Yuan, R.; Chang, J.; Zheng, M.; Dong, Q ACS Nano 2017, 11, 11417.
doi: 10.1021/acsnano.7b06061 |
15 |
Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y Chem. Soc. Rev. 2016, 45, 5605.
doi: 10.1039/C5CS00410A |
16 |
Fang, R.; Zhao, S.; Sun, Z.; Wang, D.-W.; Cheng, H.-M.; Li, F Adv. Mater. 2017, 29, 1606823.
doi: 10.1002/adma.201606823 |
17 |
Ji, X.; Lee, K. T.; Nazar, L. F Nat. Mater. 2009, 8, 500.
doi: 10.1038/nmat2460 |
18 |
Wang, L.; Li, X.; Zhang, Y.; Mao, W.; Li, Y.; Chu, P. K.; Kızılaslan, A.; Zheng, Z.; Huo, K Chem. Eng. J. 2022, 446, 137050.
doi: 10.1016/j.cej.2022.137050 |
19 |
Saroha, R.; Oh, J. H.; Lee, J. S.; Kang, Y. C.; Jeong, S. M.; Kang, D.-W.; Cho, C.; Cho, J. S Chem. Eng. J. 2021, 426, 130805.
doi: 10.1016/j.cej.2021.130805 |
20 |
Shaibani, M.; Akbari, A.; Sheath, P.; Easton, C. D.; Banerjee, P. C.; Konstas, K.; Fakhfouri, A.; Barghamadi, M.; Musameh, M. M.; Best, A. S.; et al. ACS Nano 2016, 10, 7768.
doi: 10.1021/acsnano.6b03285 |
21 | Chen, K.; Sun, Z.; Fang, R.; Li, F.; Cheng, H. Acta Phys.-Chim. Sin. 2018, 34, 377. |
陈克, 孙振华, 方若翩, 李峰, 成会明 物理化学学报, 2018, 34, 377.
doi: 10.3866/PKU.WHXB201709001 |
|
22 |
Yu, M.; Zhou, S.; Wang, Z.; Wang Y.; Zhang, N.; Wang, S.; Zhao, J.; Qiu, J Energy Storage Mater. 2019, 20, 98.
doi: 10.1016/j.ensm.2018.11.028 |
23 |
Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang, F.; Yang, Q.-H Nano Energy 2017, 33, 306.
doi: 10.1016/j.nanoen.2017.01.040 |
24 |
Xiao, R.; Yang, S.; Yu, T.; Hu, T.; Zhang, X.; Xu, R.; Wang, Y.; Guo, X.; Sun, Z.; Li, F Batteries Supercaps 2022, 5, e202100389.
doi: 10.1002/batt.202100389 |
25 |
Cheng, Z.; Xiao, Z.; Pan, H.; Wang, S.; Wang, R Adv. Energy Mater. 2018, 8, 1702337.
doi: 10.1002/aenm.201702337 |
26 |
Xiao, R.; Chen, K.; Zhang, X.; Hu, G.; Xie, J.; Rong, J.; Sun, Z.; Li, F CrystEngComm 2020, 22, 1555.
doi: 10.1039/C9CE01469A |
27 |
Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H.-M.; Li, F Nat. Commun. 2017, 8, 14627.
doi: 10.1038/ncomms14627 |
28 |
Yang, S.; Xiao, R.; Hu, T.; Fan, X.; Xu, R.; Sun, Z.; Zhong, B.; Guo, X.; Li, F Nano Energy 2021, 90, 106584.
doi: 10.1016/j.nanoen.2021.106584 |
29 |
Yu, M.; Zhou, S.; Wang, Z.; Pei, W.; Liu, X.; Liu, C.; Yan, C.; Meng, X.; Wang, S.; Zhao, J.; Qiu, J Adv. Funct. Mater. 2019, 29, 1905986.
doi: 10.1002/adfm.201905986 |
30 |
Xiao, R.; Chen, K.; Zhang, X.; Yang, Z.; Hu, G.; Sun, Z.; Cheng, H.-M.; Li, F J. Energy Chem. 2021, 54, 452.
doi: 10.1016/j.jechem.2020.06.018 |
31 |
Xiao, R.; Yu, T.; Yang, S.; Chen, K.; Li, Z.; Liu, Z.; Hu, T.; Hu, G.; Li, J.; Cheng, H.-M.; Sun, Z.; Li, F Energy Storage Mater. 2022, 51, 890.
doi: 10.1016/j.ensm.2022.07.024 |
32 |
Yan, R.; Ma, T.; Cheng, M.; Tao, X.; Yang, Z.; Ran, F.; Li, S.; Yin, B.; Cheng, C.; Yang, W Adv. Mater. 2021, 33, 2008784.
doi: 10.1002/adma.202008784 |
33 |
Tong, Z.; Huang, L.; Liu, H.; Lei, W.; Zhang, H.; Zhang, S.; Jia, Q Adv. Funct. Mater. 2021, 31, 2010455.
doi: 10.1002/adfm.202010455 |
34 |
Cheng, S.; Wang, J.; Duan, S.; Zhang, J.; Wang, Q.; Zhang, Y.; Li, L.; Liu, H.; Xiao, Q.; Lin, H Chem. Eng. J. 2021, 417, 128172.
doi: 10.1016/j.cej.2020.128172 |
35 |
Wang, M.; Song, Y.; Sun, Z.; Shao, Y.; Wei, C.; Xia, Z.; Tian, Z.; Liu, Z.; Sun, J ACS Nano 2019, 13, 13235.
doi: 10.1021/acsnano.9b06267 |
36 |
Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R Adv. Mater. 2021, 33, 2101204.
doi: 10.1002/adma.202101204 |
37 |
Hu, Y.; Cheng, H.; Chen, H.; Dai, S.; Song, K.; Ma, X.; Liu, M.; Hu, H J. Mater. Chem. A 2022, 10, 22896.
doi: 10.1039/d2ta06500b |
38 |
Shadike, Z.; Tan, S.; Wang, Q.-C.; Lin, R.; Hu, E.; Qu, D.; Yang, X.-Q Mater. Horiz. 2021, 8, 471.
doi: 10.1039/D0MH01364A |
39 |
Zhou, X.; Liu, T.; Zhao, G.; Yang, X.; Guo, H Energy Storage Mater. 2021, 40, 139.
doi: 10.1016/j.ensm.2021.05.009 |
40 |
Hu, H.; Zhao, B.; Cheng, H.; Dai, S.; Kane, N.; Yu, Y.; Liu, M Nano Energy 2019, 57, 635.
doi: 10.1016/j.nanoen.2018.12.092 |
41 |
Zhou, J.; Zhou, X.; Sun, Y.; Shen, X.; Qian, T.; Yan, C J. Energy Chem. 2021, 56, 238.
doi: 10.1016/j.jechem.2020.08.010 |
42 |
Zhang, X.; Chen, K.; Sun, Z.; Hu, G.; Xiao, R.; Cheng, H.-M.; Li, F Energy Environ. Sci. 2020, 13, 1076.
doi: 10.1039/C9EE03848E |
43 |
Chen, K.; Fang, R.; Lian, Z.; Zhang, X.; Tang, P.; Li, B.; He, K.; Wang, D.; Cheng, H.-M.; Sun, Z.; Li, F Energy Storage Mater. 2021, 37, 224.
doi: 10.1016/j.ensm.2021.02.012 |
44 |
Chen, S.; Dai, F.; Gordin, M. L.; Yu, Z.; Gao, Y.; Song, J.; Wang, D Angew. Chem. Int. Ed. 2016, 55, 4231.
doi: 10.1002/anie.201511830 |
45 |
Lian, J.; Guo, W.; Fu, Y J. Am. Chem. Soc. 2021, 143, 11063.
doi: 10.1021/jacs.1c04222 |
46 |
Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; et al. Nat. Chem. 2013, 5, 518.
doi: 10.1038/nchem.1624 |
47 |
Griebel, J. J.; Glass, R. S.; Char, K.; Pyun, J Prog. Polym. Sci. 2016, 58, 90.
doi: 10.1016/j.progpolymsci.2016.04.003 |
48 |
Simmonds, A. G.; Griebel, J. J.; Park, J.; Kim, K. R.; Chung, W. J.; Oleshko, V. P.; Kim, J.; Kim, E. T.; Glass, R. S.; Soles, C. L.; et al. ACS Macro Lett. 2014, 3, 229.
doi: 10.1021/mz400649w |
49 |
Hoefling, A.; Nguyen, D. T.; Partovi-Azar, P.; Sebastiani, D.; Theato, P.; Song, S.-W.; Lee, Y. J Chem. Mater. 2018, 30, 2915.
doi: 10.1021/acs.chemmater.7b05105 |
50 |
Hu, G.; Sun, Z.; Shi, C.; Fang, R.; Chen, J.; Hou, P.; Liu, C.; Cheng, H.-M.; Li, F Adv. Mater. 2017, 29, 1603835.
doi: 10.1002/adma.201603835 |
51 |
Dong, F.; Peng, C.; Xu, H.; Zheng, Y.; Yao, H.; Yang, J.; Zheng, S ACS Nano 2021, 15, 20287.
doi: 10.1021/acsnano.1c08449 |
52 |
Sun, Z.; Xiao, M.; Wang, S.; Han, D.; Song, S.; Chen, G.; Meng, Y J. Mater. Chem. A 2014, 2, 9280.
doi: 10.1039/c4ta00779d |
53 |
Liu, X.; Xu, N.; Qian, T.; Liu, J.; Shen, X.; Yan, C Small 2017, 13, 1702104.
doi: 10.1002/smll.201702104 |
54 |
Zeng, S. Li, L.; Xie, L.; Zhao, D.; Zhou, N.; Wang, N.; Chen, S Carbon 2017, 122, 106.
doi: 10.1016/j.carbon.2017.06.036 |
55 |
Bhargav, A.; Chang, C.-H.; Fu, Y.; Manthiram, A ACS Appl. Mater. Inter. 2019, 11, 6136.
doi: 10.1021/acsami.8b21395 |
56 |
Zhou, H.; Yu, F.; Wei, M.; Su, Y.; Ma, Y.; Wang, D.; Shen, Q Chem. Commun. 2019, 55, 3729.
doi: 10.1039/C8CC09972C |
57 |
Evers, S.; Nazar, L. F Acc. Chem. Res. 2013, 46, 1135.
doi: 10.1021/ar3001348 |
58 |
Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J Angew. Chem. Int. Ed. 2013, 52, 13186.
doi: 10.1002/anie.201304762 |
59 |
Hu, H.; Hu, Y.; Cheng, H.; Dai, S.; Song, K.; Liu, M J. Power Sources 2021, 491, 229617.
doi: 10.1016/j.jpowsour.2021.229617 |
60 |
Je, S. H.; Hwang, T. H.; Talapaneni, S. N.; Buyukcakir, O.; Kim, H. J.; Yu, J.-S.; Woo, S.-G.; Jang, M. C.; Son, B. K.; Coskun, A.; et al. ACS Energy Lett. 2016, 1, 566.
doi: 10.1021/acsenergylett.6b00245 |
61 |
Je, S. H.; Kim, H. J.; Kim, J.; Choi, J. W.; Coskun, A Adv. Funct. Mater. 2017, 27, 1703947.
doi: 10.1002/adfm.201703947 |
62 |
Zhou, J.; Qian, T.; Xu, N.; Wang, M.; Ni, X.; Liu, X.; Shen, X.; Yan, C Adv. Mater. 2017, 29, 1701294.
doi: 10.1002/adma.201701294 |
63 |
Gomez, I.; Mantione, D.; Leonet, O.; Blazquez, J. A.; Mecerreyes, D ChemElectroChem 2018, 5, 260.
doi: 10.1002/celc.201700882 |
64 |
Sang, P.; Song, J.; Guo, W.; Fu, Y Chem. Eng. J. 2021, 415, 129043.
doi: 10.1016/j.cej.2021.129043 |
65 |
Shen, K.; Mei, H.; Li, B.; Ding, J.; Yang, S Adv. Energy Mater. 2018, 8, 1701527.
doi: 10.1002/aenm.201701527 |
66 |
Zhang, T.; Hu, F.; Shao, W.; Liu, S.; Peng, H.; Song, Z.; Song, C.; Li, N.; Jian, X ACS Nano 2021, 15, 15027.
doi: 10.1021/acsnano.1c05330 |
67 |
Yan, W.; Yan, K.-Y.; Kuang, G.-C.; Jin, Z Chem. Eng. J. 2021, 424, 130316.
doi: 10.1016/j.cej.2021.130316 |
68 |
Sang, P.; Si, Y.; Fu, Y Chem. Commun. 2019, 55, 4857.
doi: 10.1039/C9CC01495K |
69 |
Li, X.; Yuan, L.; Liu, D.; Li, Z.; Chen, J.; Yuan, K.; Xiang, J.; Huang, Y Energy Storage Mater. 2020, 26, 570.
doi: 10.1016/j.ensm.2019.11.030 |
70 |
Xu, N.; Qian, T.; Liu, X.; Liu, J.; Chen, Y.; Yan, C Nano Lett. 2017, 17, 538.
doi: 10.1021/acs.nanolett.6b04610 |
71 |
Talapaneni, S. N.; Hwang, T. H.; Je, S. H.; Buyukcakir, O.; Choi, J. W.; Coskun, A Angew. Chem. Int. Ed. 2016, 55, 3106.
doi: 10.1002/anie.201511553 |
72 |
Wu, F.; Chen, S.; Srot, V.; Huang, Y.; Sinha, S. K.; van Aken, P. A.; Maier, J.; Yu, Y Adv. Mater. 2018, 30, 1706643.
doi: 10.1002/adma.201706643 |
73 |
Wang, J.; Yang, J.; Xie, J.; Xu, N Adv. Mater. 2002, 14, 963.
doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P |
74 |
Yu, X.; Xie, J.; Yang, J.; Huang, H.; Wang, K.; Wen, Z J. Electroanal. Chem. 2004, 573, 121.
doi: 10.1016/j.jelechem.2004.07.004 |
75 |
Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, A.; Buchmeiser, M. R Chem. Mater. 2011, 23, 5024.
doi: 10.1021/cm202467u |
76 |
Wei, S.; Ma, L.; Hendrickson, K. E.; Tu, Z.; Archer, L. A J. Am. Chem. Soc. 2015, 137, 12143.
doi: 10.1021/jacs.5b08113 |
77 |
Weret, M. A.; Jeffrey Kuo, C.-F.; Zeleke, T. S.; Beyene, T. T.; Tsai, M.-C.; Huang, C.-J.; Berhe, G. B.; Su, W.-N.; Hwang, B.-J Energy Storage Mater. 2020, 26, 483.
doi: 10.1016/j.ensm.2019.11.022 |
78 |
Wang, W.; Cao, Z.; Elia, G. A.; Wu, Y.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A.-H.; Cavallo, L.; Li, L.-J.; Ming, J ACS Energy Lett. 2018, 3, 2899.
doi: 10.1021/acsenergylett.8b01945 |
79 |
Zhao, X.; Wang, C.; Li, Z.; Hu, X.; Abdul Razzaq, A.; Deng, Z. J. Mater. Chem. A 2021, 9, 19282.
doi: 10.1039/D1TA03300J |
80 |
Razzaq, A. A.; Yuan, X.; Chen, Y.; Hu, J.; Mu, Q.; Ma, Y.; Zhao, X.; Miao, L.; Ahn, J. H.; Peng, Y.; et al. J. Mater. Chem. A 2020, 8, 1298.
doi: 10.1039/c9ta11390h |
81 |
Abdul Razzaq, A.; Chen, G.; Zhao, X.; Yuan, X.; Hu, J.; Li, Z.; Chen, Y.; Xu, J.; Shah, R.; Zhong, J.; et al. J. Energy Chem. 2021, 61, 170.
doi: 10.1016/j.jechem.2021.01.012 |
82 |
Wang, T.; Zhang, Q.; Zhong, J.; Chen, M.; Deng, H.; Cao, J.; Wang, L.; Peng, L.; Zhu, J.; Lu, B Adv. Energy Mater. 2021, 11, 2100448.
doi: 10.1002/aenm.202100448 |
83 |
He, B.; Rao, Z.; Cheng, Z.; Liu, D.; He, D.; Chen, J.; Miao, Z.; Yuan, L.; Li, Z.; Huang, Y Adv. Energy Mater. 2021, 11, 2003690.
doi: 10.1002/aenm.202003690 |
84 |
Wang, X.; Qian, Y.; Wang, L.; Yang, H.; Li, H.; Zhao, Y.; Liu, T Adv. Funct. Mater. 2019, 29, 1902929.
doi: 10.1002/adfm.201902929 |
85 |
Chen, X.; Peng, L.; Wang, L.; Yang, J.; Hao, Z.; Xiang, J.; Yuan, K.; Huang, Y.; Shan, B.; Yuan, L.; et al. Nat. Commun. 2019, 10, 1021.
doi: 10.1038/s41467-019-08818-6 |
86 |
Yang, H.; Qiao, Y.; Chang, Z.; He, P.; Zhou, H Angew. Chem. Int. Ed. 2021, 60, 17726.
doi: 10.1002/anie.202106788 |
87 |
Zhang, Y.; Sun, Y.; Peng, L.; Yang, J.; Jia, H.; Zhang, Z.; Shan, B.; Xie, J Energy Storage Mater. 2019, 21, 287.
doi: 10.1016/j.ensm.2018.12.010 |
88 |
Yin, L.; Wang, J.; Lin, F.; Yang, J.; Nuli, Y Energy Environ. Sci. 2012, 5, 6966.
doi: 10.1039/c2ee03495f |
89 |
Abdul Razzaq, A.; Yao, Y.; Shah, R.; Qi, P.; Miao, L.; Chen, M.; Zhao, X.; Peng, Y.; Deng, Z Energy Storage Mater. 2019, 16, 194.
doi: 10.1016/j.ensm.2018.05.006 |
90 |
Preefer, M. B.; Oschmann, B.; Hawker, C. J.; Seshadri, R.; Wudl, F Angew. Chem. 2017, 129, 15314.
doi: 10.1002/ange.201708746 |
91 |
Zhang, X.; Hu, G.; Chen, K.; Shen, L.; Xiao, R.; Tang, P.; Yan, C.; Cheng, H.-M.; Sun, Z.; Li, F Energy Storage Mater. 2021, 45, 1144.
doi: 10.1016/j.ensm.2021.11.014 |
92 |
Zhang, X.; Chen, K.; Tang, P.; Xiao, R.; Xu, R.; Yu, T.; Hu, G.; Cheng, H.-M.; Sun, Z.; Li, F J. Mater. Chem. A 2022, 10, 23562.
doi: 10.1039/D2TA07251C |
93 |
Liang, Y.; Tao, Z.; Chen, J Adv. Energy Mater. 2012, 2, 742.
doi: 10.1002/aenm.201100795 |
94 |
Guo, W.; Wawrzyniakowski, Z. D.; Cerda, M. M.; Bhargav, A.; Pluth, M. D.; Ma, Y.; Fu, Y Chem. Eur. J. 2017, 23, 16941.
doi: 10.1002/chem.201703895 |
95 |
Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y Angew. Chem. 2016, 128, 10181.
doi: 10.1002/ange.201603897 |
96 |
Li, F.; Si, Y.; Liu, B.; Li, Z.; Fu, Y Adv. Funct. Mater. 2019, 29, 1902223.
doi: 10.1002/adfm.201902223 |
97 |
Cui, Y.; Ackerson, J. D.; Ma, Y.; Bhargav, A.; Karty, J. A.; Guo, W.; Zhu, L.; Fu, Y Adv. Funct. Mater. 2018, 28, 1801791.
doi: 10.1002/adfm.201801791 |
98 |
Lv, X.; Guo, W.; Song, J.; Fu, Y Small 2022, 18, 2105071.
doi: 10.1002/smll.202105071 |
99 |
Wang, D.; Si, Y.; Guo, W.; Fu, Y Adv. Sci. 2020, 7, 1902646.
doi: 10.1002/advs.201902646 |
100 |
Wang, D.-Y.; Si, Y.; Guo, W.; Fu, Y Nat. Commun. 2021, 12, 3220.
doi: 10.1038/s41467-021-23521-1 |
101 |
Zhao, J.; Si, Y.; Han, Z.; Li, J.; Guo, W.; Fu, Y Angew. Chem. Int. Ed. 2020, 59, 2654.
doi: 10.1002/anie.201913243 |
102 |
Xie, J.; Song, Y.; Li, B.; Peng, H.; Huang, J.; Zhang, Q Angew. Chem. Int. Ed. 2020, 59, 22150.
doi: 10.1002/anie.202008911 |
103 |
Li, G.; Gao, Y.; He, X.; Huang, Q.; Chen, S.; Kim, S. H.; Wang, D Nat. Commun. 2017, 8, 850.
doi: 10.1038/s41467-017-00974-x |
104 |
Guo, W.; Zhang, W.; Si, Y.; Wang, D.; Fu, Y.; Manthiram, A Nat. Commun. 2021, 12, 3031.
doi: 10.1038/s41467-021-23155-3 |
105 |
Johansson, P Polymer 2001, 42, 4367.
doi: 10.1016/S0032-3861(00)00731-X |
106 |
Sarapas, J. M.; Tew, G. N Macromolecules 2016, 49, 1154.
doi: 10.1021/acs.macromol.5b02513 |
107 |
Wang, H.; Wang, Q.; Cao, X.; He, Y.; Wu, K.; Yang, J.; Zhou, H.; Liu, W.; Sun, X Adv. Mater. 2020, 32, 2001259.
doi: 10.1002/adma.202001259 |
108 |
Xu, R.; Xu, S.; Wang, F.; Xiao, R.; Tang, P.; Zhang, X.; Bai, S.; Sun, Z.; Li, F Small Structures 2023, 4, 2200206.
doi: 10.1002/sstr.202200206 |
[1] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[2] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[3] | Mengdi Zhang, Bei Chen, Mingbo Wu. Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101001-. |
[4] | Yuanhao Shen, Qingyu Wang, Jie Liu, Cheng Zhong, Wenbin Hu. Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204048-0. |
[5] | Qin Ran, Tianyang Sun, Chongyu Han, Haonan Zhang, Jian Yan, Jinglun Wang. Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912068-. |
[6] | Zhenjie CHENG, Yayun MAO, Qingyu DONG, Feng JIN, Yanbin SHEN, Liwei CHEN. Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 868-875. |
[7] | Dong CHEN,Xinyang YUE,Xunlu LI,Xiaojing WU,Yongning ZHOU. Research Progress of Cathode Materials for Lithium-Selenium Batteries [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 667-683. |
[8] | Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047. |
[9] | Shuai LIU,Lu YAO,Qin ZHANG,Lu-Lu LI,Nan-Tao HU,Liang-Ming WEI,Hao WEI. Advances in High-Performance Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2339-2358. |
[10] | Wan-Fei LI,Mei-Nan LIU,Jian WANG,Yue-Gang ZHANG. Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon [J]. Acta Phys. -Chim. Sin., 2017, 33(1): 165-182. |
[11] | Ze YANG,Wang ZHANG,Yue SHEN,Li-Xia YUAN,Yun-Hui HUANG. Next-Generation Energy Storage Technologies and Their Key Electrode Materials [J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1062-1071. |
[12] | LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites [J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1474-1480. |
[13] | LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, HUANG Yang, CHEN Wang-Chao, DAI Song-Yuan. TiO2/Dye/Electrolyte Interface Modification for Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1851-1864. |
[14] | XU Gui-Yin, DING Bing, NIE Ping, LUO Hong-Jun, ZHANG Xiao-Gang. Preparation and Electrochemical Performance of Carbon Nanotubes/ Graphene Oxide/Sulfur Complex Cathode Material [J]. Acta Phys. -Chim. Sin., 2013, 29(03): 546-552. |
|