Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2101001.doi: 10.3866/PKU.WHXB202101001
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Mengdi Zhang, Bei Chen, Mingbo Wu()
Received:
2021-01-04
Accepted:
2021-01-27
Published:
2021-02-08
Contact:
Mingbo Wu
E-mail:wumb@upc.edu.cn
About author:
Mingbo Wu, Email: wumb@upc.edu.cnSupported by:
Mengdi Zhang, Bei Chen, Mingbo Wu. Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin. 2022, 38(2), 2101001. doi: 10.3866/PKU.WHXB202101001
Fig 9
(a) Schematic illustration of the fabrication of the G-NDHCS-S hybrid paper 53; (b) Schematic illustration of the SGP cathodes 75; (c) The conversion process of lithium polysulfides on a graphene surface with 1T MoS2 and cycling performance of S-loading graphene/1T MoS2 electrode 76; (d) Schematic illustration of the synthesis of the PRGO/S/Mn3O4@PANI-SA cathode 77. Adapted from Wiley 53, 75, Royal Society of Chemistry 76 and ACS publications 77."
Table 1
Electrochemical performance of sulfur-loading graphene materials."
Materials | Sulfur Content (w/%) | Current Density | Specific Capacity/(mAh·g-1) | Cycle Numbers | Ref. |
Porous graphene | 66 | 1C | 824 | 80 | |
Unstacked double-layer templated graphene (DTG) | 64 | 10C | 628 | 200 | |
Hierarchical porous graphene (HPG) | 68 | 5C | 656 | Initial | |
Hydroxylated graphene | 50 | 2C | 647 | 200 | |
Functionalized holey graphene | 49 | 0.2C | 429 | 300 | |
Amino-functionalized reduced graphene oxide (EFG) | 60 | 0.5C | 650 | 350 | |
N-doped graphene | 65.2 | 2C | 492 | 1000 | |
3D B-doped graphene aerogel (BGA) | 59 | 2C | 600 | 200 | |
N/S co-doped graphene (A-NSG) | 72.4 | 0.2C | 780 | 600 | |
Co single atoms embedded in N-doped graphene (Co-N/G) | 90 | 1C | 681 | 500 | |
Holey Fe, N co-doped graphene(HFeNG) | 86.5 | 0.1C | 1290 | Initial | |
V single atoms on N-doped graphene (SAV@NG) | 80 | 0.5C | 645 | Initial | |
N-doped carbon channels implanted on graphene (NTPC-G) | 60 | 6C | 563 | Initial | |
N doped aligned CNT/graphene (N-ACNT/G) | 52.6 | 1C | 880 | 80 | |
Coaxial graphene wrapping over sulfur-coated carbon nanofibers (G-S-CNFs) | 33 | 1C | 273 | 1500 | |
Graphene-supported N and B rich carbon layer (G-NBCL) | 70 | 2C | 301 | 1500 | |
TiO2 modified N-doped graphene /sulfur composite (NG/S-TiO2) | 59 | 1C | 918 | 500 | |
VS2-attached reduced graphene oxide sheets (VS2-rGO) | 89 | 0.1C | 1013 | Initial | |
VN nanoribbon/graphene composite (VN/G) | – | 1C | 917 | 200 | |
CoSe2 hollow nanospheres decorated rGO (RGO-CoSe2) | 74.7 | 1C | 741 | 400 | |
Graphene/PDMS Foam | – | 1.5 A·g?1 | 448 | 1000 | |
Nano-sulfur/graphene paper (S-rGO) | 63 | 0.3 A·g?1 | 800 | 200 | |
rGO-S composite films (rGO-S) | 56 | 0.1C | 1187 | Initial | |
Graphene/CNT aerogels | 50 | 2C | 445 | 500 | |
Graphene wrapped N-doped hollow carbon spheres-sulfur hybrid paper (G-NDHCS-S) | 62 | 2C | 600 | Initial | |
Sulfur-graphene-conducting polymer hybrid film (SGP) | 56.4 | 1C | 806 | 500 | |
Graphene/1T MoS2 composite film | – | 0.1C | 1181 | Initial | |
Porous rGO/sulfur nanoparticles/Mn3O4 nanoparticles with sodium alginate/polyaniline binder (PRGO/S/Mn3O4@PANI-SA) | 56.2 | 5 A·g?1 | 722 | 500 |
1 |
Larcher D. ; Tarascon J. M. Nat. Chem. 2015, 7, 19.
doi: 10.1038/nchem.2085 |
2 |
Fotouhi A. ; Auger D. J. ; Propp K. ; Longo S. ; Wild M. Renew. Sust. Energ. Rev. 2016, 56, 1008.
doi: 10.1016/j.rser.2015.12.009 |
3 |
Zhang L. ; Wang Y. ; Niu Z. ; Chen J. Carbon 2019, 141, 400.
doi: 10.1016/j.carbon.2018.09.067 |
4 |
Liu Y.-T. ; Liu S. ; Li G.-R. ; Gao X.-P. Adv. Mater. 2020, 33, 2003955.
doi: 10.1002/adma.202003955 |
5 |
Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J.-M. Nat. Mater. 2011, 11, 19.
doi: 10.1038/nmat3191 |
6 |
Yang Y. ; Zheng G. ; Cui Y. Chem. Soc. Rev. 2013, 42, 3018.
doi: 10.1039/c2cs35256g |
7 |
Zhang M. ; Yu C. ; Zhao C. ; Song X. ; Han X. ; Liu S. ; Hao C. ; Qiu J. Energy Storage Mater. 2016, 5, 223.
doi: 10.1016/j.ensm.2016.04.002 |
8 |
Cheon S. E. ; Ko K. S. ; Cho J. H. ; Kim S. W. ; Chin E. Y. ; Kim H. T. J. Electrochem. Soc. 2003, 150, A796.
doi: 10.1149/1.1571532 |
9 | Liu S. ; Yao L. ; Zhang Q. ; Li L.-L. ; Hu N.-T. ; Wei L.-M. ; Wei H. Acta Phys. -Chim. Sin. 2017, 33, 2339. |
刘帅; 姚路; 章琴; 李路路; 胡南滔; 魏良明; 魏浩. 物理化学学报, 2017, 33, 2339.
doi: 10.3866/PKU.WHXB201706021 |
|
10 |
He Y. ; Chang Z. ; Wu S. ; Zhou H. J. Mater. Chem. A 2018, 6, 6155.
doi: 10.1039/C8TA01115J |
11 |
Zheng D. ; Wang G. W. ; Liu D. ; Si J. Y. ; Ding T. Y. ; Qu D. Y. ; Yang X. Q. ; Qu D. Y. Adv. Mater. Technol. 2018, 3
doi: 10.1002/admt.201700233 |
12 |
Deng S. ; Yan Y. ; Wei L. ; Li T. ; Su X. ; Yang X. ; Li Z. ; Wu M. ACS Appl. Energy Mater. 2019, 2, 1266.
doi: 10.1021/acsaem.8b01815 |
13 |
Xu Z. L. ; Kim J. K. ; Kang K. Nano Today 2018, 19, 84.
doi: 10.1016/j.nantod.2018.02.006 |
14 |
Guan L. ; Hu H. ; Li L. ; Pan Y. ; Zhu Y. ; Li Q. ; Guo H. ; Wang K. ; Huang Y. ; Zhang M. ; et al ACS Nano 2020, 14, 6222.
doi: 10.1021/acsnano.0c02294 |
15 |
Yan Y. ; Chen Z. ; Yang J. ; Guan L. ; Hu H. ; Zhao Q. ; Ren H. ; Lin Y. ; Li Z. ; Wu M. Small 2020, 16, 2004631.
doi: 10.1002/smll.202004631 |
16 | Chen Z. L. ; Gao P. ; Liu Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
|
17 |
Wang B. ; Ruan T. ; Chen Y. ; Jin F. ; Peng L. ; Zhou Y. ; Wang D. ; Dou S. Energy Storage Mater. 2020, 24, 22.
doi: 10.1016/j.ensm.2019.08.004 |
18 | Chen K. ; Sun Z. H. ; Fang R. P. ; Li F. ; Cheng H. M. Acta Phys. -Chim. Sin. 2018, 34, 377. |
陈克; 孙振华; 方若翩; 李峰; 成会明. 物理化学学报, 2018, 34, 377.
doi: 10.3866/PKU.WHXB201709001 |
|
19 |
Zhang Y. ; Gao Z. ; Song N. ; He J. ; Li X. Mater. Today Energy 2018, 9, 319.
doi: 10.1016/j.mtener.2018.06.001 |
20 |
Sun C. ; Liu Y. ; Sheng J. ; Huang Q. ; Lv W. ; Zhou G. ; Cheng H.-M. Mater. Horiz. 2020, 7, 2487.
doi: 10.1039/d0mh00815j |
21 |
Wang H. ; Yang Y. ; Liang Y. ; Robinson J. T. ; Li Y. ; Jackson A. ; Cui Y. ; Dai H. Nano Lett. 2011, 11, 2644.
doi: 10.1021/nl200658a |
22 |
Ji L. ; Rao M. ; Zheng H. ; Zhang L. ; Li Y. ; Duan W. ; Guo J. ; Cairns E. J. ; Zhang Y. J. Am. Chem. Soc. 2011, 133, 18522.
doi: 10.1021/ja206955k |
23 |
Yang X. ; Zhang L. ; Zhang F. ; Huang Y. ; Chen Y. S. ACS Nano 2014, 8, 5208.
doi: 10.1021/nn501284q |
24 |
Ning H. ; Mao Q. ; Wang W. ; Yang Z. ; Wang X. ; Zhao Q. ; Song Y. ; Wu M. J. Alloys Compd. 2019, 785, 7.
doi: 10.1016/j.jallcom.2019.01.142 |
25 |
Zhao Q. ; Liu J. ; Li X. ; Xia Z. ; Zhang Q. ; Zhou M. ; Tian W. ; Wang M. ; Hu H. ; Li Z. ; et al Chem. Eng. J. 2019, 369, 215.
doi: 10.1016/j.cej.2019.03.076 |
26 | Wang Y. ; Huo. W. ; Yuan X. ; Zhang Y. Acta Phys. -Chim. Sin. 2020, 36, 1904007. |
王易; 霍旺晨; 袁小亚; 张育新. 物理化学学报, 2020, 36, 1904007.
doi: 10.3866/PKU.WHXB201904007 |
|
27 | Zhang T. ; Li C. ; Wang W. ; Guo Z. ; Pang A. ; Ma H. Acta Phys. -Chim. Sin. 2020, 36, 1905048. |
张婷; 李翠翠; 王伟; 郭兆琦; 庞爱民; 马海霞. 物理化学学报, 2020, 36, 1905048.
doi: 10.3866/PKU.WHXB201905048 |
|
28 |
Li Y. ; Cai Q. ; Wang L. ; Li Q. ; Peng X. ; Gao B. ; Huo K. ; Chu P. K. ACS Appl. Mater. Interfaces 2016, 8, 23784.
doi: 10.1021/acsami.6b09479 |
29 |
Li Z. ; Xu R. ; Deng S. ; Su X. ; Wu W. ; Liu S. ; Wu M. Appl. Surf. Sci. 2018, 433, 10.
doi: 10.1016/j.apsusc.2017.10.050 |
30 |
Liu D. ; Zhang C. ; Zhou G. ; Lv W. ; Ling G. ; Zhi L. ; Yang Q.-H. Adv. Sci. 2018, 5
doi: 10.1002/advs.201700270 |
31 |
Guo X. ; Zheng S. ; Zhang G. ; Xiao X. ; Li X. ; Xu Y. ; Xue H. ; Pang H. Energy Storage Mater. 2017, 9, 150.
doi: 10.1016/j.ensm.2017.07.006 |
32 |
Wang Z. ; Xu X. ; Ji S. ; Liu Z. ; Zhang D. ; Shen J. ; Liu J. J. Mater. Sci. Technol. 2020, 55, 56.
doi: 10.1016/j.jmst.2019.09.037 |
33 |
Huang J.-Q. ; Liu X.-F. ; Zhang Q. ; Chen C.-M. ; Zhao M.-Q. ; Zhang S.-M. ; Zhu W. ; Qian W.-Z. ; Wei F. Nano Energy 2013, 2, 314.
doi: 10.1016/j.nanoen.2012.10.003 |
34 |
Zhao M.-Q. ; Zhang Q. ; Huang J.-Q. ; Tian G.-L. ; Nie J.-Q. ; Peng H.-J. ; Wei F. Nat. Commun. 2014, 5, 3410.
doi: 10.1038/ncomms4410 |
35 |
Tang C. ; Li B.-Q. ; Zhang Q. ; Zhu L. ; Wang H.-F. ; Shi J.-L. ; Wei F. Adv. Funct. Mater. 2016, 26, 577.
doi: 10.1002/adfm.201503726 |
36 |
Zu C. ; Manthiram A. Adv. Energy Mater. 2013, 3, 1008.
doi: 10.1002/aenm.201201080 |
37 |
Chang N. ; Zhou C. G. ; Fu H. ; Zhao Y. ; Shui J. L. Adv. Mater. Interfaces 2017, 4, 9.
doi: 10.1002/admi.201700783 |
38 |
Wang Z. ; Dong Y. ; Li H. ; Zhao Z. ; Wu H. B. ; Hao C. ; Liu S. ; Qiu J. ; Lou X. W. Nat. Commun. 2014, 5, 5002.
doi: 10.1038/ncomms6002 |
39 |
Qiu Y. ; Li W. ; Zhao W. ; Li G. ; Hou Y. ; Liu M. ; Zhou L. ; Ye F. ; Li H. ; Wei Z. ; et al Nano Lett. 2014, 14, 4821.
doi: 10.1021/nl5020475 |
40 |
Xie Y. ; Meng Z. ; Cai T. ; Han W. -Q. ACS Appl. Mater. Interfaces 2015, 7, 25202.
doi: 10.1021/acsami.5b08129 |
41 |
Xu J. ; Su D. ; Zhang W. ; Bao W. ; Wang G. J. Mater. Chem. A 2016, 4, 17381.
doi: 10.1039/c6ta05878g |
42 |
Hou T. Z. ; Chen X. ; Peng H. J. ; Huang J. Q. ; Li B. Q. ; Zhang Q. ; Li B. Small 2016, 12, 3283.
doi: 10.1002/smll.201600809 |
43 |
Zhang K. ; Chen Z. ; Ning R. ; Xi S. ; Tang W. ; Du Y. ; Liu C. ; Ren Z. ; Chi X. ; Bai M. ; et al ACS Appl. Mater. Interfaces 2019, 11, 25147.
doi: 10.1021/acsami.9b05628 |
44 |
Zhang L. ; Liu D. ; Muhammad Z. ; Wan F. ; Xie W. ; Wang Y. ; Song L. ; Niu Z. ; Chen J. Adv. Mater. 2019, 31, 19063955.
doi: 10.1002/adma.201903955 |
45 |
Li Y. ; Lin S. ; Wang D. ; Gao T. ; Song J. ; Zhou P. ; Xu Z. ; Yang Z. ; Xiao N. ; Guo S. Adv. Mater. 2020, 32, 1906722.
doi: 10.1002/adma.201906722 |
46 |
Li Y. ; Wu J. ; Zhang B. ; Wang W. ; Zhang G. ; Seh Z. W. ; Zhang N. ; Sun J. ; Huang L. ; Jiang J. ; et al Energy Storage Mater. 2020, 30, 250.
doi: 10.1016/j.ensm.2020.05.022 |
47 |
Lu C. ; Chen Y. ; Yang Y. ; Chen X. Nano Lett. 2020, 20, 5522.
doi: 10.1021/acs.nanolett.0c02167 |
48 |
Lu C. ; Fang R. ; Chen X. Adv. Mater. 2020, 32, 1906548.
doi: 10.1002/adma.201906548 |
49 |
Zhang Q. ; Zhang X. ; Wang J. ; Wang C. Nanotechnology 2021, 32, 032001.
doi: 10.1088/1361-6528/abbd70 |
50 |
Du Z. ; Chen X. ; Hu W. ; Chuang C. ; Xie S. ; Hu A. ; Yan W. ; Kong X. ; Wu X. ; Ji H. ; et al J. Am. Chem. Soc. 2019, 141, 3977.
doi: 10.1021/jacs.8b12973 |
51 |
Wang Y. ; Adekoya D. ; Sun J. ; Tang T. ; Qiu H. ; Xu L. ; Zhang S. ; Hou Y. Adv. Funct. Mater. 2019, 29, 1807485.
doi: 10.1002/adfm.201807485 |
52 |
Zhou G. ; Wang S. ; Wang T. ; Yang S.-Z. ; Johannessen B. ; Chen H. ; Liu C. ; Ye Y. ; Wu Y. ; Peng Y. ; et al Nano Lett. 2020, 20, 1252.
doi: 10.1021/acs.nanolett.9b04719 |
53 |
Zhou G. M. ; Zhao Y. B. ; Manthiram A. Adv. Energy Mater. 2015, 5, 1402263.
doi: 10.1002/aenm.201402263 |
54 |
Chen K. ; Sun Z. ; Fang R. ; Shi Y. ; Cheng H.-M. ; Li F. Adv. Funct. Mater. 2018, 28, 1707592.
doi: 10.1002/adfm.201707592 |
55 |
Chen X. ; Xiao Z. ; Ning X. ; Liu Z. ; Yang Z. ; Zou C. ; Wang S. ; Chen X. ; Chen Y. ; Huang S. Adv. Energy Mater. 2014, 4, 1301988.
doi: 10.1002/aenm.201301988 |
56 |
Peng H.-J. ; Huang J.-Q. ; Zhao M.-Q. ; Zhang Q. ; Cheng X.-B. ; Liu X.-Y. ; Qian W.-Z. ; Wei F. Adv. Funct. Mater. 2014, 24, 2772.
doi: 10.1002/adfm.201303296 |
57 |
Chen R. ; Zhao T. ; Lu J. ; Wu F. ; Li L. ; Chen J. ; Tan G. ; Ye Y. ; Amine K. Nano Lett. 2013, 13, 4642.
doi: 10.1021/nl4016683 |
58 |
Zhao C. ; Yu C. ; Zhang M. ; Yang J. ; Liu S. ; Li M. ; Han X. ; Dong Y. ; Qiu J. J. Mater. Chem. A 2015, 3, 21842.
doi: 10.1039/c5ta05146k |
59 |
Huang J.-Q. ; Xu Z.-L. ; Abouali S. ; Garakani M. A. ; Kim J.-K. Carbon 2016, 99, 624.
doi: 10.1016/j.carbon.2015.12.081 |
60 |
Zhang Z. ; Kong L.-L. ; Liu S. ; Li G.-R. ; Gao X.-P. Adv. Energy Mater. 2017, 7, 1602543.
doi: 10.1002/aenm.201602543 |
61 |
Zhang M. ; Yu C. ; Yang J. ; Zhao C. ; Ling Z. ; Qiu J. J. Mater. Chem. A 2017, 5, 10380.
doi: 10.1039/c7ta01512g |
62 |
Tang C. ; Zhang Q. ; Zhao M.-Q. ; Huang J.-Q. ; Cheng X.-B. ; Tian G.-L. ; Peng H.-J. ; Wei F. Adv. Mater. 2014, 26, 6100.
doi: 10.1002/adma.201401243 |
63 |
Lu S. ; Cheng Y. ; Wu X. ; Liu J. Nano Lett. 2013, 13, 2485.
doi: 10.1021/nl400543y |
64 |
Yuan S. ; Bao J. L. ; Wang L. ; Xia Y. ; Truhlar D. G. ; Wang Y. Adv. Energy Mater. 2016, 6, 1501733.
doi: 10.1002/aenm.201501733 |
65 |
Yu M. ; Ma J. ; Song H. ; Wang A. ; Tian F. ; Wang Y. ; Qiu H. ; Wang R. Energy Environ. Sci. 2016, 9, 1495.
doi: 10.1039/c5ee03902a |
66 |
Cheng Z. ; Xiao Z. ; Pan H. ; Wang S. ; Wang R. Adv. Energy Mater. 2018, 8, 1702337.
doi: 10.1002/aenm.201702337 |
67 |
Sun Z. ; Zhang J. ; Yin L. ; Hu G. ; Fang R. ; Cheng H.-M. ; Li F. Nat. Commun. 2017, 8, 14627.
doi: 10.1038/ncomms14627 |
68 |
Chen L. ; Yang W. ; Liu J. ; Zhou Y. Nano Res. 2019, 12, 2743.
doi: 10.1007/s12274-019-2508-3 |
69 |
Jin J. ; Wen Z. ; Ma G. ; Lu Y. ; Cui Y. ; Wu M. ; Liang X. ; Wu X. RSC Adv. 2013, 3, 2558.
doi: 10.1039/C2RA22808D |
70 |
Zhou G. M. ; Li L. ; Ma C. Q. ; Wang S. G. ; Shi Y. ; Koratkar N. ; Ren W. C. ; Li F. ; Cheng H. M. Nano Energy 2015, 11, 356.
doi: 10.1016/j.nanoen.2014.11.025 |
71 |
Wang C. ; Wang X. S. ; Wang Y. J. ; Chen J. T. ; Zhou H. H. ; Huang Y. H. Nano Energy 2015, 11, 678.
doi: 10.1016/j.nanoen.2014.11.060 |
72 |
Cao J. ; Chen C. ; Zhao Q. ; Zhang N. ; Lu Q. Q. ; Wang X. Y. ; Niu Z. Q. ; Chen J. Adv. Mater. 2016, 28, 9629.
doi: 10.1002/adma.201602262 |
73 |
Sun L. ; Kong W. B. ; Jiang Y. ; Wu H. C. ; Jiang K. L. ; Wang J. P. ; Fan S. S. J. Mater. Chem. A 2015, 3, 5305.
doi: 10.1039/c4ta06255h |
74 |
Shi H. D. ; Zhao X. J. ; Wu Z. S. ; Dong Y. F. ; Lu P. F. ; Chen J. ; Ren W. C. ; Cheng H. M. ; Bao X. H. Nano Energy 2019, 60, 743.
doi: 10.1016/j.nanoen.2019.04.006 |
75 |
Xiao P. ; Bu F. ; Yang G. ; Zhang Y. ; Xu Y. Adv. Mater. 2017, 29, 1703324.
doi: 10.1002/adma.201703324 |
76 |
He J. ; Hartmann G. ; Lee M. ; Hwang G. S. ; Chen Y. ; Manthiram A. Energy Environ. Sci. 2019, 12, 344.
doi: 10.1039/C8EE03252A |
77 |
Ghosh A. ; Manjunatha R. ; Kumar R. ; Mitra S. ACS Appl. Mater. Interfaces 2016, 8, 33775.
doi: 10.1021/acsami.6b11180 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[3] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[4] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[5] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[6] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[7] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[8] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[9] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[10] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[11] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[12] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[13] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[14] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[15] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
|