Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (5): 2210027.doi: 10.3866/PKU.WHXB202210027
• REVIEW • Previous Articles Next Articles
Huan Liu1, Yu Ma1, Bin Cao1, Qizhen Zhu2, Bin Xu2,*()
Received:
2022-10-20
Accepted:
2022-12-19
Published:
2023-01-03
Contact:
Bin Xu
E-mail:xubin@mail.buct.edu.cn
Supported by:
Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2023, 39(5), 2210027. doi: 10.3866/PKU.WHXB202210027
Table 1
Comparison of relative atomic mass, ion radius, standard potential, theoretical capacity, and crustal abundance of metals used in common secondary batteries."
Element | Material abundance (×10−6) | Ion radius (nm) | E (vs. SHE) (V) | Theoretical gravimetric capacity (mAh∙g−1) | Theoretical volumetric capacity (mAh∙cm−3) | Relative atomic mass |
Li | 18 | 0.076 | −0.304 | 3862 | 2061 | 6.94 |
Na | 23000 | 0.102 | −2.71 | 1166 | 1129 | 23.00 |
K | 21000 | 0.138 | −2.93 | 685 | 610 | 39.10 |
Zn | 79 | 0.074 | −0.76 | 820 | 5851 | 65.38 |
Mg | 23000 | 0.072 | −2.37 | 2205 | 3834 | 24.31 |
Ca | 41000 | 0.106 | −2.87 | 1337 | 2073 | 40.08 |
Fig 2
(a) Schematic illustration of the synthesis of MnOx@Ti3C2Tx; (b) SEM image of MnOx@Ti3C2Tx; (c) schematic illustration of the parallel circuitry at nanoscale based on MnOx@Ti3C2Tx; (d) rate performance of MnOx@Ti3C2Tx 54. (e) SEM image of 3D Ti3C2Tx@MnO2 microflowers; (f) long-term cycling stability (current density of 500 mA∙g−1) evaluated using the coulombic efficiency of 3D Ti3C2Tx@MnO2 microflowers in AZIBs 55."
Fig 5
(a) CV curves of Ti3C2 (OF) and Ti3C2Cl2 at a scan rate of 1 mV∙s−1; (b) typical GCD curves of Ti3C2 MXenes with different terminals at the current density of 0.5 A∙g−1; (c) CV curves of Ti3C2Br2 and Ti3C2I2 at a scan rate of 1 mV∙s−1, (d) rate capability and long-term cycling performance of Ti3C2Br2 and Ti3C2I2 62."
Fig 9
CV curves of Nb2CTx recorded at 5 mV∙s−1 up to 2.0 V (a) and 2.4 V (c); GCD curves of Nb2CTx recorded at 1 A∙g−1 up to 2.0 V (b) and 2.4 V (d); calculated proportions of plateau region in specific energy and capacity at 1 A∙g−1 (e); SEM images with EDS mapping data at 2.4 V discharge/charge states (f) 73."
Table 2
Summary of MXene for zinc anodes protection."
Strategies | Anode materials | Electrolyte | Current density a/(mA∙cm−2) | Areal Capacity a/(mAh∙cm−2) | Life span a/(h) | Ref. |
MXene host | Ti3C2Tx@Zn paper | 2 mol∙L−1 ZnSO4 | 1 | 1 | 300 | |
MXene/Graphene Aerogel@Zn | 2 mol∙L−1 ZnSO4 | 10 | 1 | 1000 | ||
Zn@MXene@Sb | 2 mol∙L−1 ZnSO4 | 0.5 | 0.5 | 1000 | ||
Ti3C2Tx@Zn powder | 2 mol∙L−1 ZnSO4 | 1 | 0.5 | 200 | ||
MXene interface protective | MZn-60 | 2 mol∙L−1 ZnSO4 | 0.2 | 0.2 | 800 | |
Ti3C2Cl2-Zn | 2 mol∙L−1 ZnSO4 | 2 | 2 | > 800 | ||
MXene/ZnS@Zn | 2 mol∙L−1 ZnSO4 | 0.5 | 0.5 | 1600 | ||
MXene-based electrolyte additives | Zn//Zn | ZnSO4-MXene-0.05 | 1 | 1 | 1000 | |
Zn//Zn | PVHF/MXene- g-PMA | 0.1 | 0.1 | 1200 | ||
Zn//Zn | PVA-Zn(CF3SO3)2-TiO2 | 0.5 | 0.5 | 3000 |
Fig 10
(a) The schematic diagram of fabricating flexible layered Ti3C2Tx@Zn paper; (b) corresponding plating/stripping profiles of the 5th, 10th, 20th, and 50th cycle of (b) bare Zn anode and (c) Ti3C2Tx@Zn anode; (d) voltage profiles of Zn plating/stripping process with bare Zn anode (black) and Ti3C2Tx@Zn anode (red) at a current density of 1 mA∙cm−2 and an area capacity of 1 mAh∙cm−2 81."
Fig 11
(a) Illustration of synchronously reducing and assembling MXene layer on the surface of Zn foil, illustration of Zn plating behavior of (b) MXene-coated Zn, and (c) pure Zn; (d) long-term cycling performance of symmetric cells with pure Zn and MXene-coated Zn at 0.2 mA∙cm−2 87; (e) schematic illustration of the Zn deposition process on the MXene matrix concerning initial Zn tiling and subsequent coherent heterogeneous interface construction; (f) long-term cyclic performance of symmetric batteries at 2 mA∙cm−2 with a fixed capacity of 1 mAh∙cm−2; (g) comparison for long-term cyclability of Zn//Ti3C2I2 and MCl-Zn//Ti3C2I2 batteries at 3 A∙g−1 88."
1 |
Yang, H.; Wang, S.; Wang, X.; Zhang, P.; Yan, C.; Luo, Y.; Chen, L.; Li, M.; Fan, F.; Zhou, Z.; et al J. Colloid Interface Sci. 2022, 609, 139.
doi: 10.1016/j.jcis.2021.11.105 |
2 |
Geng, C.; Chen, Y.; Shi, L.; Sun, Z.; Zhang, L.; Xiao, A.; Jiang, J.; Zhuang, Q.; Ju, Z New Carbon Mater. 2022, 37, 461.
doi: 10.1016/s1872-5805(22)60612-7 |
3 |
Sun, Z.; Chen, Y.; Xi, B.; Geng, C.; Guo, W.; Zhuang, Q.; An, X.; Liu, J.; Ju, Z.; Xiong, S Energy Storage Mater. 2022, 53, 482.
doi: 10.1016/j.ensm.2022.09.031 |
4 |
Zhang, P.; Soomro, R. A.; Guan, Z.; Sun, N.; Xu, B Energy Storage Mater. 2020, 29, 163.
doi: 10.1016/j.ensm.2020.04.016 |
5 |
Yang, H.; Zhang, P.; Yi, X.; Yan, C.; Pang, D.; Chen, L.; Wang, S.; Wang, C.; Liu, B.; Zhang, G.; et al Chem. Eng. J. 2022, 440, 135749.
doi: 10.1016/j.cej.2022.135749 |
6 |
Chen, Y.; Xi, B.; Huang, M.; Shi, L.; Huang, S.; Guo, N.; Li, D.; Ju, Z.; Xiong, S Adv. Mater. 2022, 34, e2108621.
doi: 10.1002/adma.202108621 |
7 |
Sun, N.; Qiu, J.; Xu, B Adv. Energy Mater. 2022, 12, 2200715.
doi: 10.1002/aenm.202200715 |
8 | Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003. |
曹斌, 李喜飞 物理化学学报, 2020, 36, 1905003.
doi: 10.3866/PKU.WHXB201905003 |
|
9 |
Fang, G.; Zhou, J.; Pan, A.; Liang, S ACS Energy Lett. 2018, 3, 2480.
doi: 10.1021/acsenergylett.8b01426 |
10 |
Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C Chem. Soc. Rev. 2020, 49, 180.
doi: 10.1039/c9cs00131j |
11 |
Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S.; Zhou, T.; Mao, J.; Pang, W. K.; Guo, Z.; Li, A.; et al Adv. Energy Mater. 2018, 8, 1801149.
doi: 10.1002/aenm.201801149 |
12 |
Cao, B.; Liu, H.; Zhang, P.; Sun, N.; Zheng, B.; Li, Y.; Du, H.; Xu, B Adv. Funct. Mater. 2021, 31, 2102126.
doi: 10.1002/adfm.202102126 |
13 |
Liu, H.; Du, H.; Zhao, W.; Qiang, X.; Zheng, B.; Li, Y.; Cao, B Energy Storage Mater. 2021, 40, 490.
doi: 10.1016/j.ensm.2021.05.037 |
14 |
Wang, X.; Zhang, S.; Shan, Y.; Chen, L.; Gao, G.; Zhu, X.; Cao, B.; He, X Energy Storage Mater. 2021, 37, 55.
doi: 10.1016/j.ensm.2021.01.027 |
15 | Zhang, P.; Peng, Y.; Zhu, Q.; Soomro, R. A.; Sun, N.; Xu, B. Energy Environ. Mater. accepted. doi: 10.1002/eem2.12379 |
16 |
Xu, C.; Li, B.; Du, H.; Kang, F Angew. Chem. Int. Ed. 2012, 51, 933.
doi: 10.1002/anie.201106307 |
17 | Huang, J.; Zhou, J.; Liang, S. Acta Phys. Chim. Sin. 2021, 37, 2005020. |
黄江涛, 周江, 梁叔全 物理化学学报, 2021, 37, 2005020.
doi: 10.3866/PKU.WHXB202005020 |
|
18 |
Liu, W.; Zhang, X.; Huang, Y.; Jiang, B.; Chang, Z.; Xu, C.; Kang, F J. Energy Chem. 2021, 56, 365.
doi: 10.1016/j.jechem.2020.07.027 |
19 |
Shen, X.; Wang, X.; Zhou, Y.; Shi, Y.; Zhao, L.; Jin, H.; Di, J.; Li, Q Adv. Funct. Mater. 2021, 31, 2101579.
doi: 10.1002/adfm.202101579 |
20 |
Zhang, S.; Chen, L.; Dong, D.; Kong, Y.; Zhang, J.; Liu, J.; Liu, Z ACS Appl. Mater. Interfaces 2022, 14, 24415.
doi: 10.1021/acsami.2c04252 |
21 |
Zhang, L.; Hu, J.; Zhang, B.; Liu, J.; Wan, H.; Miao, L.; Jiang, J. J. Mater. Chem. A 2021, 9, 7631.
doi: 10.1039/d1ta00263e |
22 |
Zampardi, G.; La Mantia, F Curr. Opin. Electrochem. 2020, 21, 84.
doi: 10.1016/j.coelec.2020.01.014 |
23 |
Yi, H.; Qin, R.; Ding, S.; Wang, Y.; Li, S.; Zhao, Q.; Pan, F Adv. Funct. Mater. 2020, 31, 2006970.
doi: 10.1002/adfm.202006970 |
24 |
Zhou, L. -F.; Gao, X. -W.; Du, T.; Gong, H.; Liu, L. -Y.; Luo, W. -B. J. Alloys Compd. 2022, 905, 163939.
doi: 10.1016/j.jallcom.2022.163939 |
25 |
Zhou, L. F.; Gao, X. W.; Du, T.; Gong, H.; Liu, L. Y.; Luo, W. B ACS Appl. Mater. Interfaces 2022, 14, 8888.
doi: 10.1021/acsami.1c10380 |
26 |
Cheng, Y.; Luo, L.; Zhong, L.; Chen, J.; Li, B.; Wang, W.; Mao, S. X.; Wang, C.; Sprenkle, V. L.; Li, G.; et al ACS Appl. Mater. Interfaces 2016, 8, 13673.
doi: 10.1021/acsami.6b03197 |
27 |
Guo, C.; Zhang, K.; Zhao, Q.; Pei, L.; Chen, J Chem. Commun. 2015, 51, 10244.
doi: 10.1039/c5cc02251g |
28 |
Wang, X.; Wang, G.; He, X J. Colloid Interface Sci. 2022, 629, 434.
doi: 10.1016/j.jcis.2022.08.166 |
29 |
Chen, L.; An, Q.; Mai, L Adv. Mater. Interfaces 2019, 6, 1900387.
doi: 10.1002/admi.201900387 |
30 |
Qian, L.; Wei, T.; Ma, K.; Yang, G.; Wang, C ACS Appl. Mater. Interfaces 2019, 11, 20888.
doi: 10.1021/acsami.9b05362 |
31 |
Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y ACS Appl. Mater. Interfaces 2018, 10, 34108.
doi: 10.1021/acsami.8b08297 |
32 |
Cao, T.; Zhang, F.; Chen, M.; Shao, T.; Li, Z.; Xu, Q.; Cheng, D.; Liu, H.; Xia, Y ACS Appl. Mater. Interfaces 2021, 13, 26924.
doi: 10.1021/acsami.1c04129 |
33 |
Wang, L.; Cao, Z.; Zhuang, P.; Li, J.; Chu, H.; Ye, Z.; Xu, D.; Zhang, H.; Shen, J.; Ye, M ACS Appl. Mater. Interfaces 2021, 13, 13338.
doi: 10.1021/acsami.1c01405 |
34 |
Zeng, Y.; Lai, Z.; Han, Y.; Zhang, H.; Xie, S.; Lu, X Adv. Mater. 2018, 30, 1802396.
doi: 10.1002/adma.201802396 |
35 |
Shen, C.; Li, X.; Li, N.; Xie, K.; Wang, J. G.; Liu, X.; Wei, B ACS Appl. Mater. Interfaces 2018, 10, 25446.
doi: 10.1021/acsami.8b07781 |
36 |
Wang, X.; Li, Y.; Wang, S.; Zhou, F.; Das, P.; Sun, C.; Zheng, S.; Wu, Z. S Adv. Energy Mater. 2020, 10, 2000081.
doi: 10.1002/aenm.202000081 |
37 |
Chen, H.; Qin, H.; Chen, L.; Wu, J.; Yang, Z J. Alloys Compd. 2020, 842, 155912.
doi: 10.1016/j.jallcom.2020.155912 |
38 |
Yin, B.; Zhang, S.; Ke, K.; Xiong, T.; Wang, Y.; Lim, B. K. D.; Lee, W. S. V.; Wang, Z.; Xue, J Nanoscale 2019, 11, 19723.
doi: 10.1039/c9nr07458a |
39 |
Liu, S.; Zhu, H.; Zhang, B.; Li, G.; Zhu, H.; Ren, Y.; Geng, H.; Yang, Y.; Liu, Q.; Li, C. C Adv. Mater. 2020, 32, 2001113.
doi: 10.1002/adma.202001113 |
40 |
Zhang, T.; Tang, Y.; Guo, S.; Cao, X.; Pan, A.; Fang, G.; Zhou, J.; Liang, S Energy Environ. Sci. 2020, 13, 4625.
doi: 10.1039/d0ee02620d |
41 |
Liu, S.; Mao, J.; Pang, W. K.; Vongsvivut, J.; Zeng, X.; Thomsen, L.; Wang, Y.; Liu, J.; Li, D.; Guo, Z Adv. Funct. Mater. 2021, 31, 2104281.
doi: 10.1002/adfm.202104281 |
42 |
Liu, M.; Yang, L.; Liu, H.; Amine, A.; Zhao, Q.; Song, Y.; Yang, J.; Wang, K.; Pan, F ACS Appl. Mater. Interfaces 2019, 11, 32046.
doi: 10.1021/acsami.9b11243 |
43 |
Yin, Y.; Wang, S.; Zhang, Q.; Song, Y.; Chang, N.; Pan, Y.; Zhang, H.; Li, X Adv. Mater. 2020, 32, 1906803.
doi: 10.1002/adma.201906803 |
44 |
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W Adv. Mater. 2011, 23, 4207.
doi: 10.1002/adma.201190147 |
45 |
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y Nat. Rev. Mater. 2017, 2, 16098.
doi: 10.1038/natrevmats.2016.98 |
46 |
Yu, L. Y.; Hu, L. F.; Anasori, B.; Liu, Y. T.; Zhu, Q. Z.; Zhang, P.; Gogotsi, Y.; Xu, B ACS Energy Lett. 2018, 3, 1597.
doi: 10.1021/acsenergylett.8b00718 |
47 |
Liu, Y. T.; Zhang, P.; Sun, N.; Anasori, B.; Zhu, Q. Z.; Liu, H.; Gogotsi, Y.; Xu, B Adv. Mater. 2018, 30, 1707334.
doi: 10.1002/adma.201707334 |
48 |
Wang, X.; Wang, Y.; Jiang, Y.; Li, X.; Liu, Y.; Xiao, H.; Ma, Y.; Huang, Y. Y.; Yuan, G Adv. Funct. Mater. 2021, 31, 2103210.
doi: 10.1002/adfm.202103210 |
49 |
Li, X.; Li, M.; Yang, Q.; Wang, D.; Ma, L.; Liang, G.; Huang, Z.; Dong, B.; Huang, Q.; Zhi, C Adv. Energy Mater. 2020, 10, 2001394.
doi: 10.1002/aenm.202001394 |
50 |
Shi, W.; Lee, W. S. V.; Xue, J ChemSusChem 2021, 14, 1634.
doi: 10.1002/cssc.202002493 |
51 |
Li, H.; Ma, L.; Han, C.; Wang, Z.; Liu, Z.; Tang, Z.; Zhi, C Nano Energy 2019, 62, 550.
doi: 10.1016/j.nanoen.2019.05.059 |
52 |
Li, Y.; Zhang, D.; Huang, S.; Yang, H. Y Nano Energy 2021, 85, 105969.
doi: 10.1016/j.nanoen.2021.105969 |
53 |
Zeng, X.; Hao, J.; Wang, Z.; Mao, J.; Guo, Z Energy Storage Mater. 2019, 20, 410.
doi: 10.1016/j.ensm.2019.04.022 |
54 |
Luo, S.; Xie, L.; Han, F.; Wei, W.; Huang, Y.; Zhang, H.; Zhu, M.; Schmidt, O. G.; Wang, L Adv. Funct. Mater. 2019, 29, 1901336.
doi: 10.1002/adfm.201901336 |
55 |
Shi, M.; Wang, B.; Chen, C.; Lang, J.; Yan, C.; Yan, X J. Mater. Chem. A 2020, 8, 24635.
doi: 10.1039/d0ta09085a |
56 |
Shi, M.; Wang, B.; Shen, Y.; Jiang, J.; Zhu, W.; Su, Y.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q Chem. Eng. J. 2020, 399, 125627.
doi: 10.1016/j.cej.2020.125627 |
57 |
Xu, G.; Zhang, Y.; Gong, Z.; Lu, T.; Pan, L J. Colloid Interface Sci. 2021, 593, 417.
doi: 10.1016/j.jcis.2021.02.090 |
58 |
Liu, C.; Xu, W.; Mei, C.; Li, M.-C.; Xu, X.; Wu, Q Chem. Eng. J. 2021, 405, 126737.
doi: 10.1016/j.cej.2020.126737 |
59 |
Liu, H.; Jiang, L.; Cao, B.; Du, H.; Lu, H.; Ma, Y.; Wang, H.; Guo, H.; Huang, Q.; Xu, B.; et al ACS Nano 2022, 16, 14539.
doi: 10.1021/acsnano.2c04968 |
60 |
Shi, Z.; Ru, Q.; Pan, Z.; Zheng, M.; Chi-Chun Ling, F.; Wei, L ChemElectroChem 2021, 8, 1091.
doi: 10.1002/celc.202100036 |
61 |
Liu, Y.; Dai, Z.; Zhang, W.; Jiang, Y.; Peng, J.; Wu, D.; Chen, B.; Wei, W.; Chen, X.; Liu, Z.; et al ACS Nano 2021, 15, 9065.
doi: 10.1021/acsnano.1c02215 |
62 |
Li, M.; Li, X.; Qin, G.; Luo, K.; Lu, J.; Li, Y.; Liang, G.; Huang, Z.; Zhou, J.; Hultman, L.; et al ACS Nano 2021, 15, 1077.
doi: 10.1021/acsnano.0c07972 |
63 |
Venkatkarthick, R.; Rodthongkum, N.; Zhang, X.; Wang, S.; Pattananuwat, P.; Zhao, Y.; Liu, R.; Qin, J ACS Appl. Energy Mater. 2020, 3, 4677.
doi: 10.1021/acsaem.0c00309 |
64 |
Li, X.; Li, M.; Yang, Q.; Li, H.; Xu, H.; Chai, Z.; Chen, K.; Liu, Z.; Tang, Z.; Ma, L.; et al ACS Nano 2020, 14, 541.
doi: 10.1021/acsnano.9b06866 |
65 |
Li, X.; Li, M.; Yang, Q.; Liang, G.; Huang, Z.; Ma, L.; Wang, D.; Mo, F.; Dong, B.; Huang, Q.; et al Adv. Energy Mater. 2020, 10, 2001791.
doi: 10.1002/aenm.202001791 |
66 |
Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W.; Wu, D.; Zuo, S.; Zhang, J.; Chen, B.; Dai, Z.; et al Adv. Funct. Mater. 2020, 31, 2008033.
doi: 10.1002/adfm.202008033 |
67 |
Tian, Y.; An, Y.; Wei, H.; Wei, C.; Tao, Y.; Li, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y Chem. Mater. 2020, 32, 4054.
doi: 10.1021/acs.chemmater.0c00787 |
68 |
Narayanasamy, M.; Kirubasankar, B.; Shi, M.; Velayutham, S.; Wang, B.; Angaiah, S.; Yan, C Chem. Commun. 2020, 56, 6412.
doi: 10.1039/d0cc01802c |
69 |
Zhu, X.; Wang, W.; Cao, Z.; Gao, S.; Chee, M. O. L.; Zhang, X.; Dong, P.; Ajayan, P. M.; Ye, M.; Shen, J J. Mater. Chem. A 2021, 9, 17994.
doi: 10.1039/d1ta05526g |
70 |
Zhu, X.; Cao, Z.; Wang, W.; Li, H.; Dong, J.; Gao, S.; Xu, D.; Li, L.; Shen, J.; Ye, M ACS Nano 2021, 15, 2971.
doi: 10.1021/acsnano.0c09205 |
71 |
Zhang, Y.; Cao, J.; Li, J.; Yuan, Z.; Li, D.; Wang, L.; Han, W Chem. Eng. J. 2022, 430, 132992.
doi: 10.1016/j.cej.2021.132992 |
72 |
Byeon, A.; Glushenkov, A. M.; Anasori, B.; Urbankowski, P.; Li, J.; Byles, B. W.; Blake, B.; Van Aken, K. L.; Kota, S.; Pomerantseva, E.; et al J. Power Sources 2016, 326, 686.
doi: 10.1016/j.jpowsour.2016.03.066 |
73 |
Li, X.; Ma, X.; Hou, Y.; Zhang, Z.; Lu, Y.; Huang, Z.; Liang, G.; Li, M.; Yang, Q.; Ma, J.; et al Joule 2021, 5, 2993.
doi: 10.1016/j.joule.2021.09.006 |
74 |
Wang, T.; Li, C.; Xie, X.; Lu, B.; He, Z.; Liang, S.; Zhou, J ACS Nano 2020, 14, 16321.
doi: 10.1021/acsnano.0c07041 |
75 | Wang, L.; Han, S.; Zhang, H.; Wang, W. Acta Chim. Sin. 2021, 79, 158. |
张璐, 王文凤, 张洪明, 韩树民, 王利民 化学学报, 2021, 79, 158.
doi: 10.6023/a20090409 |
|
76 |
Cao, Z.; Zhuang, P.; Zhang, X.; Ye, M.; Shen, J.; Ajayan, P. M Adv. Energy Mater. 2020, 10, 2001599.
doi: 10.1002/aenm.202001599 |
77 |
Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X Adv. Mater. 2019, 31, e1903675.
doi: 10.1002/adma.201903675 |
78 |
Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y Energy Storage Mater. 2020, 27, 205.
doi: 10.1016/j.ensm.2020.01.032 |
79 |
Lu, W.; Zhang, C.; Zhang, H.; Li, X ACS Energy Lett. 2021, 6, 2765.
doi: 10.1021/acsenergylett.1c00939 |
80 |
Wan, F.; Zhou, X.; Lu, Y.; Niu, Z.; Chen, J ACS Energy Lett. 2020, 5, 3569.
doi: 10.1021/acsenergylett.0c02028 |
81 |
Tian, Y.; An, Y.; Wei, C.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y ACS Nano 2019, 13, 11676.
doi: 10.1021/acsnano.9b05599 |
82 |
Zhou, J.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.; Li, L.; Chen, R Adv. Mater. 2022, 34, 2106897.
doi: 10.1002/adma.202106897 |
83 |
Xie, F.; Li, H.; Wang, X.; Zhi, X.; Chao, D.; Davey, K.; Qiao, S. Z Adv. Energy Mater. 2021, 11, 2003419.
doi: 10.1002/aenm.202003419 |
84 |
Zhang, Y.; Howe, J. D.; Ben-Yoseph, S.; Wu, Y.; Liu, N ACS Energy Lett. 2021, 6, 404.
doi: 10.1021/acsenergylett.0c02343 |
85 |
Tian, Y.; An, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y Energy Storage Mater. 2021, 41, 343.
doi: 10.1016/j.ensm.2021.06.019 |
86 |
Li, X.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z.; Liang, G.; Zhao, Y.; Ma, L.; Li, M.; et al ACS Nano 2021, 15, 14631.
doi: 10.1021/acsnano.1c04354 |
87 |
Zhang, N.; Huang, S.; Yuan, Z.; Zhu, J.; Zhao, Z.; Niu, Z Angew. Chem. Int. Ed. 2021, 60, 2861.
doi: 10.1002/anie.202012322 |
88 |
Li, X.; Li, M.; Luo, K.; Hou, Y.; Li, P.; Yang, Q.; Huang, Z.; Liang, G.; Chen, Z.; Du, S.; et al ACS Nano 2021, 16, 813.
doi: 10.1021/acsnano.1c08358 |
89 |
An, Y.; Tian, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y ACS Nano 2021, 15, 15259.
doi: 10.1021/acsnano.1c05934 |
90 |
Wu, K.; Huang, J.; Yi, J.; Liu, X.; Liu, Y.; Wang, Y.; Zhang, J.; Xia, Y Adv. Energy Mater. 2020, 10, 1903977.
doi: 10.1002/aenm.201903977 |
91 |
Kang, L.; Cui, M.; Zhang, Z.; Jiang, F Batteries Supercaps 2020, 3, 966.
doi: 10.1002/batt.202000060 |
92 |
Du, Y.; Li, Y.; Xu, B. B.; Liu, T. X.; Liu, X.; Ma, F.; Gu, X.; Lai, C Small 2022, 18, 2104640.
doi: 10.1002/smll.202104640 |
93 |
Wang, Y.; Wang, Z.; Yang, F.; Liu, S.; Zhang, S.; Mao, J.; Guo, Z Small 2022, 18, 2107033.
doi: 10.1002/smll.202107033 |
94 |
Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y Small Methods 2019, 3, 1800272.
doi: 10.1002/smtd.201800272 |
95 |
Pan, Q.; Zheng, Y.; Kota, S.; Huang, W.; Wang, S.; Qi, H.; Kim, S.; Tu, Y.; Barsoum, M. W.; Li, C. Y Nanoscale Adv. 2019, 1, 395.
doi: 10.1039/c8na00206a |
96 |
Sun, C.; Wu, C.; Gu, X.; Wang, C.; Wang, Q Nano-Micro Lett. 2021, 13, 89.
doi: 10.1007/s40820-021-00612-8 |
97 |
Ma, L.; Li, Q.; Ying, Y.; Ma, F.; Chen, S.; Li, Y.; Huang, H.; Zhi, C Adv. Mater. 2021, 33, 2007406.
doi: 10.1002/adma.202007406 |
98 |
Yuan, D.; Manalastas, W., Jr.; Zhang, L.; Chan, J. J.; Meng, S.; Chen, Y.; Srinivasan, M ChemSusChem 2019, 12, 4889.
doi: 10.1002/cssc.201901409 |
99 |
Chen, Z.; Li, X.; Wang, D.; Yang, Q.; Ma, L.; Huang, Z.; Liang, G.; Chen, A.; Guo, Y.; Dong, B.; et al Energy Environ. Sci. 2021, 14, 3492.
doi: 10.1039/d1ee00409c |
[1] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[2] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[3] | Jingjing Wang, Guiqiang Cao, Ruixian Duan, Xiangyang Li, Xifei Li. Advances in Single Metal Atom Catalysts Enhancing Kinetics of Sulfur Cathode [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212005-0. |
[4] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[5] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[6] | Mochun Zhang, Shuo Feng, Yunling Wu, Yanguang Li. Cathode Materials for Rechargeable Magnesium-Ion Batteries: A Review [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205050-0. |
[7] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[8] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[9] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[10] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[11] | Mengdi Zhang, Bei Chen, Mingbo Wu. Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101001-. |
[12] | Yuanhao Shen, Qingyu Wang, Jie Liu, Cheng Zhong, Wenbin Hu. Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204048-0. |
[13] | Yuefeng Su, Qiyu Zhang, Lai Chen, Liying Bao, Yun Lu, Shi Chen, Feng Wu. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005062-. |
[14] | Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005013-. |
[15] | Jiangtao Huang, Jiang Zhou, Shuquan Liang. Guest Pre-Intercalation Strategy to Boost the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005020-. |
|