Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (5): 2005006.doi: 10.3866/PKU.WHXB202005006
• FEATURE ARTICLE • Previous Articles Next Articles
Jingsong Peng, Qunfeng Cheng()
Received:
2020-05-05
Accepted:
2020-07-10
Published:
2020-07-14
Contact:
Qunfeng Cheng
E-mail:cheng@buaa.edu.cn
About author:
Qunfeng Cheng, Email: cheng@buaa.edu.cnSupported by:
Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites[J]. Acta Phys. -Chim. Sin. 2022, 38(5), 2005006. doi: 10.3866/PKU.WHXB202005006
Fig 3
(a) Fabrication of rGO-Ca2+-PCDO nanocomposite fiber. (b) SEM image of cross-section of a rGO-Ca2+-PCDO nanocomposite fiber. (c) Tensile stress-strain curves of GO-Ca2+ (Curve 1), rGO-Ca2+ (Curve 2), GO-Ca2+-PCDO (Curve 3) and rGO-Ca2+-PCDO (Curve 4) fibers. (d) Schematic of interface design of rGO-CS-Cu film. (e) Tensile stress-strain curves of GO, rGO, rGO-CS, rGO-CS-Cu films. (f) SEM image of cross-section of a rGO-CS-Cu film. (g) Fabrication process of rGO-WS2-PCDO nanocomposite film. (h) SEM image of the side view fracture morphology of a rGO-WS2-PCDO film. (i) Fatigue testing of rGO, rGO-WS2, rGO-PCDO and rGO-WS2-PCDO films. (a–c) Adapted with permission from Ref.31, Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d–f) Adapted with permission from Ref.34, Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (g–i) Adapted with permission from Ref.35, Copyright 2017, American Chemical Society."
Fig 4
(a) Schematic of interfacial design of sequentially bridged graphene-based (SBG) nanocomposite film. (b) Tensile stress-strain curves of rGO, rGO-PCDO (G-PCO), rGO-AP-PSE (πBG) and SBG films. (c) Electromagnetic interference (EMI) shielding effectiveness as a function of frequency for rGO, G-PCO, πBG and SBG films. (d) Tensile stress-strain curves of GO, rGO films and BPDD-bridged graphene-based (πBG) film. (e) EMI shielding effectiveness as a function of frequency for rGO and πBG films. (f) Property retention in tensile strength, electrical conductivity, and EMI shielding effectiveness as a function of folding cycle number for rGO and πBG films. (a–c) Adapted with permission from Ref.37, Copyright 2018, National Academy of Sciences. (d–f) Adapted with permission from Ref.60, Copyright 2019, Elsevier Inc."
Fig 5
(a) Fabrication process of the inverse nacre-like graphene-epoxy nanocomposite. (b) SEM image of a rGO-CMC scaffold. (c) SEM image of the cross-section of an inverse nacre-like graphene-epoxy nanocomposite. (d) Comparison of fracture toughness among various graphene-epoxy nanocomposites. The fracture toughness for KJC of the inverse nacre-like graphene-epoxy nanocomposite is 3.6-fold that of pure epoxy resin. (e) SEM image of crack propagation of the inverse nacre-like graphene-epoxy nanocomposite. (f) The self-monitoring function of the inverse nacre-like graphene-epoxy nanocomposite. Adapted with permission from Ref.75, Copyright 2019, Elsevier Inc."
Fig 6
(a) SEM images of inverse nacre-like graphene-epoxy nanocomposites with different thickness of epoxy layers through different freezing rates. (b) Electrical resistance as a function of temperature for the inverse nacre-like graphene-epoxy nanocomposite. (c) Infrared thermal images of the inverse nacre-like graphene-epoxy nanocomposite during the electric heating process. (d) Varying electrical resistance during the electric heating process. (e) SEM image of the cross-section of an inverse nacre-like graphene-epoxy nanocomposite with shape memory property. (f) The exhibition of shape memory property. (a–d) Adapted with permission from Ref.76, Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (e–f) Adapted with permission from Ref.77, Copyright 2019, The Royal Society of Chemistry."
1 |
Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
2 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
doi: 10.1126/science.1157996 |
3 |
Berger C. ; Song Z. M. ; Li X. B. ; Wu X. S. ; Brown N. ; Naud C. ; Mayou D. ; Li T. B. ; Hass J. ; Marchenkov A. N. ; et al Science 2006, 312, 1191.
doi: 10.1126/science.1125925 |
4 |
Huang C. ; Cheng Q. Compos. Sci. Technol. 2017, 150, 141.
doi: 10.1016/j.compscitech.2017.07.021 |
5 |
Wan S. ; Peng J. ; Jiang L. ; Cheng Q. Adv. Mater. 2016, 28, 7862.
doi: 10.1002/adma.201601934 |
6 |
Wegst U. G. ; Bai H. ; Saiz E. ; Tomsia A. P. ; Ritchie R. O. Nat. Mater. 2015, 14, 23.
doi: 10.1038/nmat4089 |
7 |
Barthelat F. ; Yin Z. ; Buehler M. J. Nat. Rev. Mater. 2016, 1, 16007.
doi: 10.1038/natrevmats.2016.7 |
8 |
Espinosa H. D. ; Rim J. E. ; Barthelat F. ; Buehler M. J. Prog. Mater. Sci. 2009, 54, 1059.
doi: 10.1016/j.pmatsci.2009.05.001 |
9 |
Dikin D. A. ; Stankovich S. ; Zimney E. J. ; Piner R. D. ; Dommett G. H. ; Evmenenko G. ; Nguyen S. T. ; Ruoff R. S. Nature 2007, 448, 457.
doi: 10.1038/nature06016 |
10 |
Keten S. ; Buehler M. J. Nano Lett. 2008, 8, 743.
doi: 10.1021/nl0731670 |
11 |
Park S. ; Lee K. S. ; Bozoklu G. ; Cai W. ; Nguyen S. T. ; Ruoff R. S. ACS Nano 2008, 2, 572.
doi: 10.1021/nn700349a |
12 |
Xu Y. ; Bai H. ; Lu G. ; Li C. ; Shi G. J. Am. Chem. Soc. 2008, 130, 5856.
doi: 10.1021/ja800745y |
13 |
Putz K. W. ; Compton O. C. ; Palmeri M. J. ; Nguyen S. T. ; Brinson L. C. Adv. Funct. Mater. 2010, 20, 3322.
doi: 10.1002/adfm.201000723 |
14 |
Li Y. Q. ; Yu T. ; Yang T. Y. ; Zheng L. X. ; Liao K. Adv. Mater. 2012, 24, 3426.
doi: 10.1002/adma.201200452 |
15 |
Hu K. ; Tolentino L. S. ; Kulkarni D. D. ; Ye C. ; Kumar S. ; Tsukruk V. V. Angew. Chem. Int. Ed. 2013, 52, 13784.
doi: 10.1002/anie.201307830 |
16 |
Xu Z. ; Sun H. ; Zhao X. ; Gao C. Adv. Mater. 2013, 25, 188.
doi: 10.1002/adma.201203448 |
17 |
Yeh C. N. ; Raidongia K. ; Shao J. ; Yang Q. H. ; Huang J. Nat. Chem. 2014, 7, 166.
doi: 10.1038/nchem.2145 |
18 |
Zhang M. ; Huang L. ; Chen J. ; Li C. ; Shi G. Adv. Mater. 2014, 26, 7588.
doi: 10.1002/adma.201403322 |
19 |
Wang J. ; Qiao J. ; Wang J. ; Zhu Y. ; Jiang L. ACS Appl. Mater. Interfaces 2015, 7, 9281.
doi: 10.1021/acsami.5b02194 |
20 |
Xin G. ; Yao T. ; Sun H. ; Scott S. M. ; Shao D. ; Wang G. ; Lian J. Science 2015, 349, 1083.
doi: 10.1126/science.aaa6502 |
21 |
Georgakilas V. ; Tiwari J. N. ; Kemp K. C. ; Perman J. A. ; Bourlinos A. B. ; Kim K. S. ; Zboril R. Chem. Rev. 2016, 116, 5464.
doi: 10.1021/acs.chemrev.5b00620 |
22 |
Xiong R. ; Hu K. ; Grant A. M. ; Ma R. ; Xu W. ; Lu C. ; Zhang X. ; Tsukruk V. V. Adv. Mater. 2016, 28, 1501.
doi: 10.1002/adma.201504438 |
23 |
Ye S. ; Chen B. ; Hu D. ; Liu C. ; Feng J. ChemNanoMat 2016, 2, 816.
doi: 10.1002/cnma.201600127 |
24 |
Zhao H. ; Yue Y. ; Zhang Y. ; Li L. ; Guo L. Adv. Mater. 2016, 28, 2037.
doi: 10.1002/adma.201505511 |
25 |
He G. ; Xu M. ; Zhao J. ; Jiang S. ; Wang S. ; Li Z. ; He X. ; Huang T. ; Cao M. ; Wu H. ; et al Adv. Mater. 2017, 29, 1605898.
doi: 10.1002/adma.201605898 |
26 |
Xin G. ; Zhu W. ; Deng Y. ; Cheng J. ; Zhang L. T. ; Chung A. J. ; De S. ; Lian J. Nat. Nanotechnol. 2019, 14, 168.
doi: 10.1038/s41565-018-0330-9 |
27 |
Li P. ; Yang M. ; Liu Y. ; Qin H. ; Liu J. ; Xu Z. ; Liu Y. ; Meng F. ; Lin J. ; Wang F. ; et al Nat. Commun. 2020, 11, 2645.
doi: 10.1038/s41467-020-16494-0 |
28 |
Wan S. ; Cheng Q. Adv. Funct. Mater. 2017, 27, 1703459.
doi: 10.1002/adfm.201703459 |
29 |
Zhang Y. ; Gong S. ; Zhang Q. ; Ming P. ; Wan S. ; Peng J. ; Jiang L. ; Cheng Q. Chem. Soc. Rev. 2016, 45, 2378.
doi: 10.1039/c5cs00258c |
30 |
Xu Z. ; Gao C. Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
31 |
Zhang Y. ; Li Y. ; Ming P. ; Zhang Q. ; Liu T. ; Jiang L. ; Cheng Q. Adv. Mater. 2016, 28, 2834.
doi: 10.1002/adma.201506074 |
32 |
Zhang Y. ; Peng J. ; Li M. ; Saiz E. ; Wolf S. E. ; Cheng Q. ACS Nano 2018, 12, 8901.
doi: 10.1021/acsnano.8b04322 |
33 |
Wang X. ; Peng J. ; Zhang Y. ; Li M. ; Saiz E. ; Tomsia A. P. ; Cheng Q. ACS Nano 2018, 12, 12638.
doi: 10.1021/acsnano.8b07392 |
34 |
Cheng Y. R. ; Peng J. S. ; Xu H. J. ; Cheng Q. F. Adv. Funct. Mater. 2018, 28, 1800924.
doi: 10.1002/adfm.201800924 |
35 |
Wan S. ; Zhang Q. ; Zhou X. ; Li D. ; Ji B. ; Jiang L. ; Cheng Q. ACS Nano 2017, 11, 7074.
doi: 10.1021/acsnano.7b02706 |
36 |
Akbari A. ; Cunning B. V. ; Joshi S. R. ; Wang C. ; Camacho-Mojica D. C. ; Chatterjee S. ; Modepalli V. ; Cahoon C. ; Bielawski C. W. ; Bakharev P. ; et al Matter 2020, 2, 1198.
doi: 10.1016/j.matt.2020.02.014 |
37 |
Wan S. ; Li Y. ; Mu J. ; Aliev A. E. ; Fang S. ; Kotov N. A. ; Jiang L. ; Cheng Q. ; Baughman R. H. Proc. Natl. Acad. Sci. USA 2018, 115, 5359.
doi: 10.1073/pnas.1719111115 |
38 |
Zhou T. ; Ni H. ; Wang Y. ; Wu C. ; Zhang H. ; Zhang J. ; Tomsia A. P. ; Jiang L. ; Cheng Q. Proc. Natl. Acad. Sci. USA 2020, 117, 8727.
doi: 10.1073/pnas.1916610117 |
39 |
Cui W. ; Li M. ; Liu J. ; Wang B. ; Zhang C. ; Jiang L. ; Cheng Q. ACS Nano 2014, 8, 9511.
doi: 10.1021/nn503755c |
40 |
Wan S. J. ; Peng J. S. ; Li Y. C. ; Hu H. ; Jiang L. ; Cheng Q. F. ACS Nano 2015, 9, 9830.
doi: 10.1021/acsnano.5b02902 |
41 |
Degtyar E. ; Harrington M. J. ; Politi Y. ; Fratzl P. Angew. Chem. Int. Ed. 2014, 53, 12026.
doi: 10.1002/anie.201404272 |
42 |
Huang X. ; Zeng Z. ; Zhang H. Chem. Soc. Rev. 2013, 42, 1934.
doi: 10.1039/c2cs35387c |
43 |
Liu Y. ; Rodrigues J. N. B. ; Luo Y. Z. ; Li L. ; Carvalho A. ; Yang M. ; Laksono E. ; Lu J. ; Bao Y. ; Xu H. ; et al Nat. Nanotechnol. 2018, 13, 828.
doi: 10.1038/s41565-018-0178-z |
44 |
Dong X. ; Fu D. ; Fang W. ; Shi Y. ; Chen P. ; Li L. J. Small 2009, 5, 1422.
doi: 10.1002/smll.200801711 |
45 |
Das B. ; Voggu R. ; Rout C. S. ; Rao C. N. Chem. Commun. 2008, 5155
doi: 10.1039/b808955h |
46 |
Su Y. H. ; Wu Y. K. ; Tu S. L. ; Chang S. J. Appl. Phys. Lett. 2011, 99, 163102.
doi: 10.1063/1.3653284 |
47 |
Ni H. ; Xu F. ; Tomsia A. P. ; Saiz E. ; Jiang L. ; Cheng Q. ACS Appl. Mater. Interfaces 2017, 9, 24987.
doi: 10.1021/acsami.7b07748 |
48 |
Gong S. ; Cui W. ; Zhang Q. ; Cao A. ; Jiang L. ; Cheng Q. ACS Nano 2015, 9, 11568.
doi: 10.1021/acsnano.5b05252 |
49 |
Wan S. ; Li Y. ; Peng J. ; Hu H. ; Cheng Q. ; Jiang L. ACS Nano 2015, 9, 708.
doi: 10.1021/nn506148w |
50 |
Wang J. ; Cheng Q. ; Lin L. ; Jiang L. ACS Nano 2014, 8, 2739.
doi: 10.1021/nn406428n |
51 |
Wan S. ; Xu F. ; Jiang L. ; Cheng Q. Adv. Funct. Mater. 2017, 27, 1605636.
doi: 10.1002/adfm.201605636 |
52 |
Cheng Q. ; Wu M. ; Li M. ; Jiang L. ; Tang Z. Angew. Chem. Int. Ed. 2013, 52, 3750.
doi: 10.1002/anie.201210166 |
53 |
Song P. ; Xu Z. ; Wu Y. ; Cheng Q. ; Guo Q. ; Wang H. Carbon 2017, 111, 807.
doi: 10.1016/j.carbon.2016.10.067 |
54 |
Gong S. ; Jiang L. ; Cheng Q. J. Mater. Chem. A 2016, 4, 17073.
doi: 10.1039/c6ta06893f |
55 |
Gong S. ; Zhang Q. ; Wang R. ; Jiang L. ; Cheng Q. J. Mater. Chem. A 2017, 5, 16386.
doi: 10.1039/c7ta03535g |
56 |
Ming P. ; Song Z. ; Gong S. ; Zhang Y. ; Duan J. ; Zhang Q. ; Jiang L. ; Cheng Q. J. Mater. Chem. A 2015, 3, 21194.
doi: 10.1039/c5ta05742f |
57 |
Gong S. ; Wu M. ; Jiang L. ; Cheng Q. Mater. Res. Express 2016, 3, 075002.
doi: 10.1088/2053-1591/3/7/075002 |
58 |
Wan S. ; Hu H. ; Peng J. ; Li Y. ; Fan Y. ; Jiang L. ; Cheng Q. Nanoscale 2016, 8, 5649.
doi: 10.1039/c6nr00562d |
59 |
Zhang Q. ; Wan S. ; Jiang L. ; Cheng Q. Sci. China: Technol. Sci. 2017, 60, 758.
doi: 10.1007/s11431-016-0529-3 |
60 |
Wan S. ; Chen Y. ; Wang Y. ; Li G. ; Wang G. ; Liu L. ; Zhang J. ; Liu Y. ; Xu Z. ; Tomsia A. P. Matter 2019, 1, 389.
doi: 10.1016/j.matt.2019.04.006 |
61 |
Kumar A. ; Sharma K. ; Dixit A. R. J. Mater. Sci. 2018, 54, 5992.
doi: 10.1007/s10853-018-03244-3 |
62 |
Domun N. ; Hadavinia H. ; Zhang T. ; Sainsbury T. ; Liaghat G. H. ; Vahid S. Nanoscale 2015, 7, 10294.
doi: 10.1039/c5nr01354b |
63 |
Chandrasekaran S. ; Sato N. ; Tölle F. ; Mülhaupt R. ; Fiedler B. ; Schulte K. Compos. Sci. Technol. 2014, 97, 90.
doi: 10.1016/j.compscitech.2014.03.014 |
64 |
Deville S. ; Saiz E. ; Nalla R. K. ; Tomsia A. P. Science 2006, 311, 515.
doi: 10.1126/science.1120937 |
65 |
Munch E. ; Launey M. E. ; Alsem D. H. ; Saiz E. ; Tomsia A. P. ; Ritchie R. O. Science 2008, 322, 1516.
doi: 10.1126/science.1164865 |
66 |
Bouville F. ; Maire E. ; Meille S. ; Van de Moortele B. ; Stevenson A. J. ; Deville S. Nat. Mater. 2014, 13, 508.
doi: 10.1038/nmat3915 |
67 |
Bai H. ; Chen Y. ; Delattre B. ; Tomsia A. P. ; Ritchie R. O. Sci. Adv. 2015, 1, e1500849.
doi: 10.1126/sciadv.1500849 |
68 |
Qiu L. ; Liu J. Z. ; Chang S. L. ; Wu Y. ; Li D. Nat. Commun. 2012, 3, 1241.
doi: 10.1038/ncomms2251 |
69 |
Gao H. L. ; Zhu Y. B. ; Mao L. B. ; Wang F. C. ; Luo X. S. ; Liu Y. Y. ; Lu Y. ; Pan Z. ; Ge J. ; Shen W. ; et al Nat. Commun. 2016, 7, 12920.
doi: 10.1038/ncomms12920 |
70 |
Picot O. T. ; Rocha V. G. ; Ferraro C. ; Ni N. ; D'Elia E. ; Meille S. ; Chevalier J. ; Saunders T. ; Peijs T. ; Reece M. J. ; et al Nat. Commun. 2017, 8, 14425.
doi: 10.1038/ncomms14425 |
71 |
Si Y. ; Wang X. ; Dou L. ; Yu J. ; Ding B. Sci. Adv. 2018, 4, eaas8925.
doi: 10.1126/sciadv.aas8925 |
72 |
Ferraro C. ; Garcia-Tuñon E. ; Rocha V. G. ; Barg S. ; Fariñas M. D. ; Alvarez-Arenas T. E. G. ; Sernicola G. ; Giuliani F. ; Saiz E. Adv. Funct. Mater. 2016, 26, 1636.
doi: 10.1002/adfm.201504051 |
73 |
Zhang H. ; Cooper A. I. Adv. Mater. 2007, 19, 1529.
doi: 10.1002/adma.200700154 |
74 |
Riblett B. W. ; Francis N. L. ; Wheatley M. A. ; Wegst U. G. K. Adv. Funct. Mater. 2012, 22, 4920.
doi: 10.1002/adfm.201201323 |
75 |
Peng J. ; Huang C. ; Cao C. ; Saiz E. ; Du Y. ; Dou S. ; Tomsia A. P. ; Wagner H. D. ; Jiang L. ; Cheng Q. Matter 2019, 2, 220.
doi: 10.1016/j.matt.2019.08.013 |
76 |
Huang C. ; Peng J. ; Wan S. ; Du Y. ; Dou S. ; Wagner H. D. ; Tomsia A. P. ; Jiang L. ; Cheng Q. Angew. Chem. Int. Ed. 2019, 58, 7636.
doi: 10.1002/anie.201902410 |
77 |
Huang C. ; Peng J. ; Cheng Y. ; Zhao Q. ; Du Y. ; Dou S. ; Tomsia A. P. ; Wagner H. D. ; Jiang L. ; Cheng Q. J. Mater. Chem. A 2019, 7, 2787.
doi: 10.1039/c8ta10725d |
78 | Zhang J. ; Wang L. N. ; Chen X. F. ; Wang Y. F. ; Niu C. Y. ; Wu L. X. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2020, 36, 1912002. |
张静; 王丽娜; 陈晓飞; 王玉峰; 牛成艳; 吴立新; 唐智勇. 物理化学学报, 2020, 36, 1912002.
doi: 10.3866/PKU.WHXB201912002 |
|
79 | Li K. X. ; Zhang T. L. ; Li H. Z. ; Li M. Z. ; Song Y. L. Acta Phys. -Chim. Sin. 2020, 36, 1911057. |
李凯旋; 张泰隆; 李会增; 李明珠; 宋延林. 物理化学学报, 2020, 36, 1911057.
doi: 10.3866/PKU.WHXB201911057 |
|
80 | Chen Z. L. ; Gao P. ; Liu Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[3] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[4] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[5] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[6] | Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306038-. |
[7] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[8] | Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307012-. |
[9] | Zhenfei Gao, Qingquan Song, Zhihua Xiao, Zhaolong Li, Tao Li, Jiajun Luo, Shanshan Wang, Wanli Zhou, Lanying Li, Junrong Yu, Jin Zhang. Submicron-Sized, High Crystalline Graphene-Reinforced Meta-Aramid Fibers with Enhanced Tensile Strength [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307046-. |
[10] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[11] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[12] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[13] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[14] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[15] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
|