Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (3): 2005013.doi: 10.3866/PKU.WHXB202005013
• REVIEW • Previous Articles Next Articles
Yongli Heng1, Zhenyi Gu2, Jinzhi Guo2, Xinglong Wu1,2,*()
Received:
2020-05-06
Accepted:
2020-06-11
Published:
2020-06-17
Contact:
Xinglong Wu
E-mail:xinglong@nenu.edu.cn
About author:
Xinglong Wu. Email: xinglong@nenu.edu.cn. Tel.: +86-431-85099128Supported by:
Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2021, 37(3), 2005013. doi: 10.3866/PKU.WHXB202005013
Fig 2
Electrochemical performance of Zn/V2O5 in Zn(CF3SO3)2-LiTFSI electrolyte and Zn(CF3SO3)2 electrolyte 33. (a) CV curves of Zn/V2O5 batteries at 0.1 mV·s-1, (b) the 15th cycle charge/discharge curves of Zn/V2O5 batteries at 100 mA·g-1, cycling stability of the V2O5 at (c) 100 mA·g-1 and (d) 500 mA·g-1."
Fig 4
(a) Strategies of adding AB spacer to prepare spaced V2O5 and without adding AB to prepare stacked V2O5; SEM images of (b) spaced and (c) stacked V2O5; (d) XRD patterns of spaced and stacked V2O5; (e) Raman spectra of spaced and stacked V2O5; electrochemical performance of AZIBs: (f) rate performance and (g) cycling performance 41."
Fig 6
(a–c) XRD patterns of Cu0.05VO/Cu0.1VO/Cu0.2VO-0/100/200/300/400 composites; (d) corresponding calculated d-spacing of (001) plane; (e) cycling performance comparison of CuVO-300 and VO-300; (f) average discharge capacity of TVO-300 between 0.5 and 20 A·g-1; (g) cycling performance of TVO-300 and VO-300 at 10 A·g-1 52."
Table 1
Several vanadium-based cathode materials for AZIBs reported in recent years."
Materials morphology | Structure (space group) | Electrolyte | Ion (de-) intercalation mechanism | Discharge plateaus/V | Specific capacity/(mAh·g-1) | Cycle number | Ref. |
Bulk V2O5 | Pmmn | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+, H2O | 0.42 and 0.85 | 470 (0.2 A·g-1) | 4000 (91.1%, 5 A·g-1) | |
Porous V2O5 | Pmmn | 21 mol·L-1 LiTFSI-1 mol·L-1 Zn(CF3SO3)2 | Li+, Zn2+ | 0.90 and 1.10 | 238 (50 mA·g-1) | 2000 (80%, 2000 mA·g-1) | |
V2O5 hollow nanospheres | Pmmn | 3 mol·L-1 Zn(SO4)2 | Zn2+ | 0.56 and 0.85 | 327 (0.1 A·g-1) | 6000 (69.7%, 10 A·g-1) | |
V2O5 nanosheets | Pmmn | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.47 and 0.88 | 503.1 (100 mA·g-1) | 700 (86%, 500 mA·g-1) | |
V2O5@AB nanosheets | Pmmn | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.50 and 0.90 | 452 (0.1 A·g-1) | 5000 (92%, 10 A·g-1) | |
V2O5·nH2O nanowires/graphene (n = 1.29) | P1 | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.54 and 0.91 | 372 (0.3 A·g-1) | 900 (71%, 6 A·g-1) | |
V2O5·1.6H2O nanosheets | P1 | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.50 and 0.90 | 426 (0.1 A·g-1) | 5000 (95%, 10 A·g-1) | |
Zn0.25V2O5·nH2O nanobelts | P${\rm{\bar 1}}$ | 1 mol·L-1 Zn(SO4)2 | Zn2+, H2O | ≈ 0.6, 0.8 and 1.0 | 282 (300 mA·g-1) | 1000 (80%, 3000 mA·g-1) | |
LixV2O5·nH2O nanosheets | P1 | 2 mol·L-1 Zn(SO4)2 | Zn2+ | 0.59, 0.82 and 0.96 | 407.6 (1 A·g-1) | 500 (76%, 5 A·g-1) | |
Ca0.25V2O5·nH2O nanobelts | P1 | 1 mol·L-1 Zn(SO4)2 | Zn2+ | ≈ 0.7, 1.1 and 1.3 | 340 (0.05 A·g-1) | 3000 (96%, 20 A·g-1) | |
Porous Mg0.34V2O5·nH2O nanobelts | P1 | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+, Mg2+ | ≈ 0.4, 0.7 and 1.3 | 353 (50 mA·g-1) | 2000 (97%, 5000 mA·g-1) | |
Cu0.1V2O5·nH2O nanosheets | P1 | 2 mol·L-1 Zn(SO4)2 | Zn2+ | 0.59, 0.81 and 0.96 | 359 (1 A·g-1) | 10000 (98%, 10 A·g-1) | |
Ag0.33V2O5 nanorods | C2/m | 2 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.604, 0.915 and 1.082 | 200 (0.2 A·g-1) | 700 (3 A·g-1) | |
VO2(B) nanorods | C2/m | 1 mol·L-1 Zn(SO4)2 | Zn2+ | 0.42, 0.51 and 0.74 | 325.6 (0.05 A·g-1) | 5000 (86%, 3 A·g-1) | |
VO2(B) nanorods/rGO | C2/m | 1 mol·L-1 Zn(SO4)2 | Zn2+ | 0.55 and 0.78 | 365 (50 mA·g-1) | 200 (80%, 50 mA·g-1) | |
VO2(B)·0.2H2O nanocuboids/graphene | C2/m | 2 mol·L-1 Zn(SO4)2 | Zn2+ | 0.44 and 0.58 | 423 (0.25 A·g-1) | 1000 (87%, 8 A·g-1) | |
VO2(A) hollow spheres | P42/nmc | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.44, 0.52 and 0.90 | 357 (0.1 A·g-1) | 500 (76%, 5 A·g-1) | |
VO2(D) hollow nanospheres | P21/c | 3 mol·L-1 Zn(SO4)2 | Zn2+, H2O, H+ | 0.57 and 0.92 | 408 (0.1 A·g-1) | 10000 (58.2%, 10 A·g-1) | |
Porous VO2(M)/CNTs | P21/c | 2 mol·L-1 Zn(SO4)2 | H+ | 0.55 and 0.85 | 248 (2 A·g-1) | 5000 (84.5%, 20 A·g-1) | |
Na3V2(PO4)3/C nanoparticles | R3${\bar c}$ | 0.5 mol·L-1 Zn(CH3COO)2 | Zn2+ | 1.1 | 97 (50 mA·g-1) | 100 (74%, 50 mA·g-1) | |
Na3V2(PO4)3@rGO microspheres | R3${\bar c}$ | 2 mol·L-1 Zn(CF3SO3)2 | Na+, Zn2+ | 1.02 and 1.26 | 114 (50 mA·g-1) | 200 (75%, 500 mA·g-1) | |
Na3V2(PO4)2F3@C microparticles | P42/mnm | 2 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 1.25 and 1.62 | 60 (0.2 A·g-1) | 4000 (95%, 1 A·g-1) | |
VOPO4 microsheets | Pbam | 21 mol·L-1 LiTFSI-1 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 1.20, 1.34, 1.53 and 1.82 | 139 (0.05 A·g-1) | 1000 (93%, 5 A·g-1) | |
VS2 nanosheets | P${\rm{\bar 3}}$ml | 1 mol·L-1 Zn(SO4)2 | Zn2+, H2O | 0.63 and 0.72 | 190.3 (0.05 A·g-1) | 200 (98%, 0.5 A·g-1) | |
VS4@rGO nanoparticles | I2/a | 1 mol·L-1 Zn(CF3SO3)2 | Zn2+ (and conversion mechanism) | 0.54 and 0.89 | 180 (1 A·g-1) | 165 (83.3%, 1 A·g-1) |
Fig 7
Bond-valence sum energy map of VO2(B) for the (a) a–b, (b) a–c, (c) b–c planes show all possible zinc sites in the VO2(B) crystal structure; (d) formation energy of ZnxVO2(B) (0 ≤ x ≤ 0.5); (e) calculated average redox potential and experimentally measured charge/discharge curve of ZnxVO2(B); (f) predicted mechanism of Zn2+ intercalation into VO2(B) 60."
Fig 10
(a) XRD pattern and SEM image of N3VPF@C; (b) CV curves in the potential range of 0.8–1.9 V at a scan rate of 0.2 mV·s-1 and (c) initial three charge/discharge profiles at 0.08 A·g-1 for CFF-Zn/2 mol·L-1 Zn(CF3SO3)2/N3VPF@C battery; (d) battery structure and Zn storage mechanism illustrations 66."
1 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
2 |
Stougie L. ; Giustozzi N. ; van der Kooi H. ; Stoppato A. Int. J. Energy Res. 2018, 42, 2916.
doi: 10.1002/er.4037 |
3 |
Yang Y. Q. ; Bremner S. ; Menictas C. ; Kay M. Renew. Sust. Energy Rev. 2018, 91, 109.
doi: 10.1016/j.rser.2018.03.047 |
4 |
Abraham K. M. J. Phys. Chem. Lett. 2015, 6, 830.
doi: 10.1021/jz5026273 |
5 |
Li M. ; Lu J. ; Chen Z. W. ; Amine K. Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
6 |
Sarma D. D. ; Shukla A. K. ACS Energy Lett. 2018, 3, 2841.
doi: 10.1021/acsenergylett.8b01966 |
7 |
Yoshino A. Angew. Chem. Int. Ed. 2012, 51, 5798.
doi: 10.1002/anie.201105006 |
8 |
Liu Z. Y. ; Huang Y. ; Huang Y. ; Yang Q. ; Li X. L. ; Huang Z. D. ; Zhi C. Y. Chem. Soc. Rev. 2020, 49, 180.
doi: 10.1039/c9cs00131j |
9 |
Wang Y. G. ; Yi J. ; Xia Y. Y. Adv. Energy Mater. 2012, 2, 830.
doi: 10.1002/aenm.201200065 |
10 |
Fang G. Z. ; Zhou J. ; Pan A. Q. ; Liang S. Q. ACS Energy Lett. 2018, 3, 2480.
doi: 10.1021/acsenergylett.8b01426 |
11 |
Li H. F. ; Ma L. T. ; Han C. P. ; Wang Z. F. ; Liu Z. X. ; Tang Z. J. ; Zhi C. Y. Nano Energy 2019, 62, 550.
doi: 10.1016/j.nanoen.2019.05.059 |
12 |
Ming J. ; Guo J. ; Xia C. ; Wang W. X. ; Alshareef H. N. Mater. Sci. Eng. R 2019, 135, 58.
doi: 10.1016/j.mser.2018.10.002 |
13 |
Selvakumaran D. ; Pan A. Q. ; Liang S. Q. ; Cao G. Z. J. Mater. Chem. A 2019, 7, 18209.
doi: 10.1039/c9ta05053a |
14 |
Song M. ; Tan H. ; Chao D. L. ; Fan H. J. Adv. Funct. Mater. 2018, 28, 1802564.
doi: 10.1002/adfm.201802564 |
15 |
Xu C. J. ; Li B. H. ; Du H. D. ; Kang F. Y. Angew. Chem. Int. Ed. 2012, 51, 933.
doi: 10.1002/anie.201106307 |
16 |
Alfaruqi M. H. ; Mathew V. ; Gim J. ; Kim S. ; Song J. ; Baboo J. P. ; Choi S. H. ; Kim J. Chem. Mater. 2015, 27, 3609.
doi: 10.1021/cm504717p |
17 |
Guo C. ; Liu H. M. ; Li J. F. ; Hou Z. G. ; Liang J. W. ; Zhou J. ; Zhu Y. C. ; Qian Y. T. Electrochim. Acta 2019, 304, 370.
doi: 10.1016/j.electacta.2019.03.008 |
18 |
Islam S. ; Alfaruqi M. H. ; Mathew V. ; Song J. ; Kim S. ; Kim S. ; Jo J. ; Baboo J. P. ; Pham D. T. ; Putro D. Y. ; et al J. Mater. Chem. A 2017, 5, 23299.
doi: 10.1039/c7ta07170a |
19 |
Khamsanga S. ; Pornprasertsuk R. ; Yonezawa T. ; Mohamad A. A. ; Kheawhom S. Sci. Rep. 2019, 9, 8441.
doi: 10.1038/s41598-019-44915-8 |
20 |
Wang C. Y. ; Wang M. Q. ; He Z. C. ; Liu L. ; Huang Y. D. ACS Appl. Energy Mater. 2020, 3, 1742.
doi: 10.1021/acsaem.9b02220 |
21 |
Wei C. G. ; Xu C. J. ; Li B. H. ; Du H. D. ; Kang F. Y. J. Phys. Chem. Solids 2012, 73, 1487.
doi: 10.1016/j.jpcs.2011.11.038 |
22 |
Trocoli R. ; La Mantia F. ChemSusChem 2015, 8, 481.
doi: 10.1002/cssc.201403143 |
23 |
Zhang L. Y. ; Chen L. ; Zhou X. F. ; Liu Z. P. Adv. Energy Mater. 2015, 5, 1400930.
doi: 10.1002/aenm.201400930 |
24 |
Zhang L. Y. ; Chen L. ; Zhou X. F. ; Liu Z. P. Sci. Rep. 2015, 5, 18263.
doi: 10.1038/srep18263 |
25 |
Kundu D. ; Adams B. D. ; Duffort V. ; Vajargah S. H. ; Nazar L. F. Nat. Energy 2016, 1, 16119.
doi: 10.1038/nenergy.2016.119 |
26 |
Xu X. M. ; Xiong F. Y. ; Meng J. S. ; Wang X. P. ; Niu C. J. ; An Q. Y. ; Mai L. Q. Adv. Funct. Mater. 2020, 30, 1904398.
doi: 10.1002/adfm.201904398 |
27 |
Zhang N. ; Dong Y. ; Jia M. ; Bian X. ; Wang Y. Y. ; Qiu M. D. ; Xu J. Z. ; Liu Y. C. ; Jiao L. F. ; Cheng F. Y. ACS Energy Lett. 2018, 3, 1366.
doi: 10.1021/acsenergylett.8b00565 |
28 |
Li Y. K. ; Huang Z. M. ; Kalambate P. K. ; Zhong Y. ; Huang Z. M. ; Xie M. L. ; Shen Y. ; Huang Y. H. Nano Energy 2019, 60, 752.
doi: 10.1016/j.nanoen.2019.04.009 |
29 |
Zhou J. ; Shan L. T. ; Wu Z. X. ; Guo X. ; Fang G. Z. ; Liang S. Q. Chem. Commun. 2018, 54, 4457.
doi: 10.1039/c8cc02250j |
30 |
Kühnel R. S. ; Reber D. ; Battaglia C. ACS Energy Lett. 2017, 2, 2005.
doi: 10.1021/acsenergylett.7b00623 |
31 |
Zhang N. ; Cheng F. Y. ; Liu Y. C. ; Zhao Q. ; Lei K. X. ; Chen C. C. ; Liu X. S. ; Chen J. J. Am. Chem. Soc. 2016, 138, 12894.
doi: 10.1021/jacs.6b05958 |
32 |
Huang S. ; Zhu J. C. ; Tian J. L. ; Niu Z. Q. Chem. Eur. J. 2019, 25, 14480.
doi: 10.1002/chem.201902660 |
33 |
Hu P. ; Yan M. Y. ; Zhu T. ; Wang X. P. ; Wei X. J. ; Li J. T. ; Zhou L. ; Li Z. H. ; Chen L. N. ; Mai L. Q. ACS Appl. Mater. Interfaces 2017, 9, 42717.
doi: 10.1021/acsami.7b13110 |
34 |
Chen X. L. ; Wang L. B. ; Li H. ; Cheng F. Y. ; Chen J. J. Energy Chem. 2019, 38, 20.
doi: 10.1016/j.jechem.2018.12.023 |
35 |
Dong Y. ; Di S. L. ; Zhang F. B. ; Bian X. ; Wang Y. Y. ; Xu J. Z. ; Wang L. B. ; Cheng F. Y. ; Zhang N. J. Mater. Chem. A 2020, 8, 3252.
doi: 10.1039/c9ta13068c |
36 |
Zhang N. ; Cheng F. Y. ; Liu J. X. ; Wang L. B. ; Long X. H. ; Liu X. S. ; Li F. J. ; Chen J. Nat. Commun. 2017, 8, 405.
doi: 10.1038/s41467-017-00467-x |
37 |
Zhang N. ; Dong Y. ; Wang Y. Y. ; Wang Y. X. ; Li J. J. ; Xu J. Z. ; Liu Y. C. ; Jiao L. F. ; Cheng F. Y. ACS Appl. Mater. Interfaces 2019, 11, 32978.
doi: 10.1021/acsami.9b10399 |
38 |
Zhang N. ; Jia M. ; Dong Y. ; Wang Y. Y. ; Xu J. Z. ; Liu Y. C. ; Jiao L. F. ; Cheng F. Y. Adv. Funct. Mater. 2019, 29, 1807331.
doi: 10.1002/adfm.201807331 |
39 |
Chen L. L. ; Yang Z. H. ; Cui F. ; Meng J. L. ; Chen H. Z. ; Zeng X. Appl. Surf. Sci. 2020, 507, 145137.
doi: 10.1016/j.apsusc.2019.145137 |
40 |
Javed M. S. ; Lei H. ; Wang Z. L. ; Liu B. T. ; Cai X. ; Mai W. J. Nano Energy 2020, 70, 104573.
doi: 10.1016/j.nanoen.2020.104573 |
41 |
Wang X. Y. ; Ma L. W. ; Sun J. K. ACS Appl. Mater. Interfaces 2019, 11, 41297.
doi: 10.1021/acsami.9b13103 |
42 |
Wang X. Y. ; Ma L. W. ; Zhang P. C. ; Wang H. Y. ; Li S. ; Ji S. J. ; Wen Z. S. ; Sun J. K. Appl. Surf. Sci. 2020, 502, 144207.
doi: 10.1016/j.apsusc.2019.144207 |
43 |
Chen D. ; Rui X. H. ; Zhang Q. ; Geng H. B. ; Gan L. Y. ; Zhang W. ; Li C. C. ; Huang S. M. ; Yu Y. Nano Energy 2019, 60, 171.
doi: 10.1016/j.nanoen.2019.03.034 |
44 |
Ding Y. C. ; Peng Y. Q. ; Chen W. Y. ; Niu Y. J. ; Wu S. G. ; Zhang X. X. ; Hu L. H. Appl. Surf. Sci. 2019, 493, 368.
doi: 10.1016/j.apsusc.2019.07.026 |
45 |
Wang H. L. ; Bi X. X. ; Bai Y. ; Wu C. ; Gu S. C. ; Chen S. ; Wu F. ; Amine K. ; Lu J. Adv. Energy Mater. 2017, 7, 1602720.
doi: 10.1002/aenm.201602720 |
46 |
Yan M. Y. ; He P. ; Chen Y. ; Wang S. Y. ; Wei Q. L. ; Zhao K. N. ; Xu X. ; An Q. Y. ; Shuang Y. ; Shao Y. Y. ; et al Adv. Mater. 2018, 30, 1703725.
doi: 10.1002/adma.201703725 |
47 |
Yang Y. Q. ; Tang Y. ; Fang G. Z. ; Shan L. T. ; Guo J. S. ; Zhang W. Y. ; Wang C. ; Wang L. B. ; Zhou J. ; Liang S. Q. Energy Environ. Sci. 2018, 11, 3157.
doi: 10.1039/c8ee01651h |
48 |
Xu G. B. ; Liu X. ; Huang S. J. ; Li L. ; Wei X. L. ; Cao J. X. ; Yang L. W. ; Chu P. K. ACS Appl. Mater. Interfaces 2020, 12, 706.
doi: 10.1021/acsami.9b17653 |
49 |
Xia C. ; Guo J. ; Li P. ; Zhang X. X. ; Alshareef H. N. Angew. Chem. Int. Ed. 2018, 57, 3943.
doi: 10.1002/anie.201713291 |
50 |
Lan B. X. ; Peng Z. ; Chen L. N. ; Tang C. ; Dong S. J. ; Chen C. ; Zhou M. ; Chen C. ; An Q. Y. ; Luo P. J. Alloys Compd. 2019, 787, 9.
doi: 10.1016/j.jallcom.2019.02.078 |
51 |
Ming F. W. ; Liang H. F. ; Lei Y. J. ; Kandambeth S. ; Eddaoudi M. ; Alshareef H. N. ACS Energy Lett. 2018, 3, 2602.
doi: 10.1021/acsenergylett.8b01423 |
52 |
Yang Y. Q. ; Tang Y. ; Liang S. Q. ; Wu Z. X. ; Fang G. Z. ; Cao X. X. ; Wang C. ; Lin T. Q. ; Pan A. Q. ; Zhou J. Nano Energy 2019, 61, 617.
doi: 10.1016/j.nanoen.2019.05.005 |
53 |
Geng H. B. ; Cheng M. ; Wang B. ; Yang Y. ; Zhang Y. F. ; Li C. C. Adv. Funct. Mater. 2020, 30, 1907684.
doi: 10.1002/adfm.201907684 |
54 |
Liu F. ; Chen Z. X. ; Fang G. Z. ; Wang Z. Q. ; Cai Y. S. ; Tang B. Y. ; Zhou J. ; Liang S. Q. Nanomicro Lett. 2019, 11, 25.
doi: 10.1007/s40820-019-0256-2 |
55 |
Liu S. C. ; Zhu H. ; Zhang B. H. ; Li G. ; Zhu H. K. ; Ren Y. ; Geng H. B. ; Yang Y. ; Liu Q. ; Li C. C. Adv. Mater. 2020, e2001113.
doi: 10.1002/adma.202001113 |
56 |
Li R. X. ; Yu X. ; Bian X. F. ; Hu F. RSC Adv. 2019, 9, 35117.
doi: 10.1039/c9ra07340j |
57 |
Lee S. ; Ivanov I. N. ; Keum J. K. ; Lee H. N. Sci. Rep. 2016, 6, 19621.
doi: 10.1038/srep19621 |
58 |
Ni J. ; Jiang W. T. ; Yu K. ; Sun F. ; Zhu Z. Q. Cryst. Res. Technol. 2011, 46, 507.
doi: 10.1002/crat.201100110 |
59 |
Chen L. N. ; Ruan Y. S. ; Zhang G. B. ; Wei Q. L. ; Jiang Y. L. ; Xiong T. F. ; He P. ; Yang W. ; Yan M. Y. ; An Q. Y. ; et al Chem. Mater. 2019, 31, 699.
doi: 10.1021/acs.chemmater.8b03409 |
60 |
Park J. S. ; Jo J. H. ; Aniskevich Y. ; Bakavets A. ; Ragoisha G. ; Streltsov E. ; Kim J. ; Myung S. T. Chem. Mater. 2018, 30, 6777.
doi: 10.1021/acs.chemmater.8b02679 |
61 |
Jia D. D. ; Zheng K. ; Song M. ; Tan H. ; Zhang A. T. ; Wang L. H. ; Yue L. J. ; Li D. ; Li C. W. ; Liu J. Q. Nano Res. 2020, 13, 215.
doi: 10.1007/s12274-019-2603-5 |
62 |
Chen L. L. ; Yang Z. H. ; Huang Y. G. Nanoscale 2019, 11, 13032.
doi: 10.1039/c9nr03129d |
63 |
Zhang L. S. ; Miao L. ; Zhang B. ; Wang J. S. ; Liu J. ; Tan Q. Y. ; Wan H. Z. ; Jiang J. J. J. Mater. Chem. A 2020, 8, 1731.
doi: 10.1039/c9ta11031c |
64 |
Li G. L. ; Yang Z. ; Jiang Y. ; Jin C. H. ; Huang W. ; Ding X. L. ; Huang Y. H. Nano Energy 2016, 25, 211.
doi: 10.1016/j.nanoen.2016.04.051 |
65 |
Hu P. ; Zhu T. ; Wang X. P. ; Zhou X. F. ; Wei X. J. ; Yao X. H. ; Luo W. ; Shi C. W. ; Owusu K. A. ; Zhou L. ; et al Nano Energy 2019, 58, 492.
doi: 10.1016/j.nanoen.2019.01.068 |
66 |
Li W. ; Wang K. L. ; Cheng S. J. ; Jiang K. Energy Stor. Mater. 2018, 15, 14.
doi: 10.1016/j.ensm.2018.03.003 |
67 |
Wan F. ; Zhang Y. ; Zhang L. L. ; Liu D. B. ; Wang C. D. ; Song L. ; Niu Z. Q. ; Chen J. Angew. Chem. Int. Ed. 2019, 58, 7062.
doi: 10.1002/anie.201902679 |
68 |
He P. ; Yan M. Y. ; Zhang G. B. ; Sun R. M. ; Chen L. N. ; An Q. Y. ; Mai L. Q. Adv. Energy Mater. 2017, 7, 1601920.
doi: 10.1002/aenm.201601920 |
69 |
Qin H. G. ; Yang Z. H. ; Chen L. L. ; Chen X. ; Wang L. M. J. Mater. Chem. A 2018, 6, 23757.
doi: 10.1039/c8ta08133f |
70 |
Dai X. ; Wan F. ; Zhang L. L. ; Cao H. M. ; Niu Z. Q. Energy Stor. Mater. 2019, 17, 143.
doi: 10.1016/j.ensm.2018.07.022 |
71 |
Wei T. Y. ; Li Q. ; Yang G. Z. ; Wang C. X. J. Mater. Chem. A 2018, 6, 8006.
doi: 10.1039/c8ta02090f |
72 | Song W. X. ; Hou H. S. ; Ji X. B. Acta Phys. -Chim. Sin. 2017, 33, 103. |
宋维鑫; 侯红帅; 纪效波. 物理化学学报, 2017, 33, 103.
doi: 10.3866/PKU.WHXB201608303 |
|
73 |
Jian Z. L. ; Zhao L. ; Pan H. L. ; Hu Y. S. ; Li H. ; Chen W. ; Chen L. Q. Electrochem. Commun. 2012, 14, 86.
doi: 10.1016/j.elecom.2011.11.009 |
74 | Gu Z. Y. ; Guo J. Z. ; Yang Y. ; Zhao X. X. ; Yang X. ; Nie X. J. ; He X. Y. ; Wu X. L. Chin. J. Inorg. Chem. 2019, 35, 1535. |
谷振一; 郭晋芝; 杨洋; 赵欣欣; 杨旭; 聂雪娇; 何晓燕; 吴兴隆. 无机化学学报, 2019, 35, 1535.
doi: 10.11862/CJIC.2019.188 |
|
75 | Guo J. Z. ; Wan F. ; Wu X. L. ; Zhang J. P. J. Mol. Sci. 2016, 32, 265. |
郭晋芝; 万放; 吴兴隆; 张景萍. 分子科学学报, 2016, 32, 265.
doi: 10.13563/j.cnki.jmolsci.2016.04.001 |
|
76 |
Hu P. ; Zou Z. Y. ; Sun X. W. ; Wang D. ; Ma J. ; Kong Q. Y. ; Xiao D. D. ; Gu L. ; Zhou X. H. ; Zhao J. W. ; et al Adv. Mater. 2020, 32, 1907526.
doi: 10.1002/adma.201907526 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[3] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[4] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[5] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[6] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[7] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[8] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[9] | Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211005-0. |
[10] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[11] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[12] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[13] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[14] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[15] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
|