Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2009033.doi: 10.3866/PKU.WHXB202009033
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Received:
2020-09-09
Accepted:
2020-11-05
Published:
2020-11-16
Contact:
Zhenyu Sun
E-mail:sunzy@mail.buct.edu.cn
About author:
Zhenyu Sun, Email: sunzy@mail.buct.edu.cn. Tel.: +86-13301308339Supported by:
Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction[J]. Acta Phys. -Chim. Sin. 2021, 37(7), 2009033. doi: 10.3866/PKU.WHXB202009033
"
Electrocatalyst | Electrolyte | Major product and maximum FE | Current density b | Stability | Ref. |
O2 plasma treated Cu | 0.1 mol∙L−1 KHCO3 | C2H4, 60.0% at −0.9 V versus RHE | N.A. | 1 h | |
Cyclic voltammetry (CV)-treated Cu | 0.1 mol∙L−1 KHCO3 | C2H4, 40.0% at −1.0 V versus RHE | N.A. | N.A. | |
Multihollow Cu2O | 2 mol∙L−1 KOH | C2+ (C2H4, ethanol, propanol, acetic acid), 75.2% at −0.61 V versus RHE | C2+: 267 mA·cm−2 at −0.61 V versus RHE | > 3 h | |
Cu-Cu2O/Cu | 0.1 mol∙L−1 KCl | C2 (ethanol, acetic acid), 80.7% at −0.4 V versus RHE | C2: 11.5 mA·cm−2 at −0.4 V versus RHE | 24 h | |
Cu2O@CuMOF | 0.1 mol∙L−1 KHCO3 | CH4, 63.2% at −1.71 V versus RHE | CH4: 8.4 mA·cm−2 at −1.71 V versus RHE | 1 h | |
Cu2O-MWCNTs | 0.5 mol∙L−1 NaHCO3 | CH3OH, 38.0% at −0.8 V versus Ag/AgCl | 7.5 mA·cm−2 at −0.8 V versus Ag/AgCl | > 20 min | |
Cu3NiOC | 0.5 mol∙L−1 KHCO3 | HCOO−, 95.9% at −0.57 V versus RHE | HCOO−: 10.9 mA·cm−2 at −0.57 V versus RHE | 25 h | |
Cu/La2CuO4 | 1 mol∙L−1 KOH | CH4, 56.3% at −1.4 V versus RHE | CH4: 117 mA·cm−2 at −1.4 V versus RHE | > 20 min | |
SnOx | 0.1 mol∙L−1 KHCO3 | HCOO−, 64.0% at −1.2 V versus Ag/AgCl | 3 mA·cm−2 at −1.2 V versus Ag/AgCl | 2 h | |
SnOx/Sn | 0.1 mol∙L−1 KHCO3 | HCOO−, 89.0% at −1.7 V versus Ag/AgCl | 6 mA·cm−2 at −1.7 V versus Ag/AgCl | 10 times of reuse | |
Cu/SnO2 | 0.5 mol∙L−1 KHCO3 | CO, 93.0% at −0.7 V versus RHE | 4.6 mA·cm−2 at −0.7 V versus RHE | N.A. | |
Cu/SnOx | 0.1 mol∙L−1 KHCO3 | CO, 89.0% at −0.99 V versus RHE | CO: 11.3 mA·cm−2 at −0.99 V versus RHE | N.A. | |
PbSnO3/C | 0.1 mol∙L−1 nBu4NPF6 in PC a | C2O42−, 85.1% at −1.9 V versus Ag/Ag+ | C2O42−: 2.0 mA·cm−2 at −1.9 V versus Ag/Ag+ | N.A. | |
Zn2SnO4/SnO2 | 0.1 mol∙L−1 KHCO3 | HCOO−, 77.0% at −1.08 V versus RHE | HCOO−: 5.77 mA·cm−2 at −1.18 V versus RHE | 24 h | |
1D wire in tube SnO2 | 0.1 mol∙L−1 KHCO3 | HCOO−, 63.0% at −0.99 V versus RHE | N.A. | 14 h | |
SnO2 quantum wires | 0.1 mol∙L−1 KHCO3 | HCOO−, 87.3% at −1.156 V versus RHE | HCOO−: 13.7 mA·cm−2 at −1.156 V versus RHE | 7 | |
3D SnO2 nanosheets on carbon cloth | 0.5 mol∙L−1 NaHCO3 | HCOO−, 87.0% at −1.6 V versus Ag/AgCl | 50 mA·cm−2 at −1.6 V versus Ag/AgCl | 24 h | |
Co3O4 layer of 1.72 nm thickness | 0.1 mol∙L−1 KHCO3 | HCOO−, 64.3% at −0.88 V versus SCE | 0.68 mA·cm−2 at −0.88 V versus SCE | 20 h | |
Bi2O3 | 0.5 mol∙L−1 KHCO3 | HCOO−, 91.0% at −0.9 V versus RHE | HCOO−: 8 mA·cm−2 at −0.9 V versus RHE | 24 h | |
Bi2O3@C | 0.5 mol∙L−1 KHCO3 | HCOO−, 92.0% at −0.9 V versus RHE | HCOO−: 7.5 mA·cm−2 at −0.9 V versus RHE | 10 h | |
In2O3@C | 0.5 mol∙L−1 KHCO3 | HCOO−, 87.6% at −0.9 V versus RHE | 14.8 mA·cm−2 at −0.9 V versus RHE | 12 h | |
ZnO nanosheets | 0.1 mol∙L−1 KHCO3 | CO, 83.0% at −1.1 V versus RHE | CO: 16.1 mA·cm−2 at −1.1 V versus RHE | 8 h | |
ZrO2/N-doped carbon | 0.5 mol∙L−1 KHCO3 | CO, 64.0% at −0.4 V versus RHE | 2.6 mA·cm−2 at −0.4 V versus RHE | 5 h | |
Ga2O3 | 3.0 mol∙L−1 KCl | HCOOH, 80.0% at −2 V versus Ag/AgCl | 0.3 mA·cm−2 at −2 V versus Ag/AgCl | 50 cycles | |
RuO2-coated diamond | pH = 3.9 aqueous solution | HCOOH, 40.0% at −0.6 V versus SCE | N.A. | N.A. |
1 |
He M. ; Sun Y. ; Han B. Angew. Chem., Int. Ed. 2013, 52, 9620.
doi: 10.1002/anie.201209384 |
2 |
Shih C. F. ; Zhang T. ; Li J. ; Bai C. Joule 2018, 2, 1925.
doi: 10.1016/j.joule.2018.08.016 |
3 |
Bushuyev O. S. ; De Luna P. ; Dinh C. T. ; Tao L. ; Saur G. ; van de Lagemaat J. ; Kelley S. O. ; Sargent E. H. Joule 2018, 2, 825.
doi: 10.1016/j.joule.2017.09.003 |
4 |
Zheng Y. ; Vasileff A. ; Zhou X. ; Jiao Y. ; Jaroniec M. ; Qiao S. -Z. J. Am. Chem. Soc. 2019, 141, 7646.
doi: 10.1021/jacs.9b02124 |
5 | Ning H. ; Wang W. H. ; Mao Q. H. ; Zheng S. R. ; Yang Z. X. ; Zhao Q. S. ; Wu M. B. Acta Phys. -Chim. Sin. 2018, 34, 938. |
宁汇; 王文行; 毛勤虎; 郑诗瑞; 杨中学; 赵青山; 吴明铂. 物理化学学报, 2018, 34, 938.
doi: 10.3866/PKU.WHXB201801263 |
|
6 | Gao Y. N. ; Liu S. Z. ; Zhao Z. Q. ; Tao H. C. ; Sun Z. Y. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
7 |
Fan Q. ; Zhang M. ; Jia M. ; Liu S. ; Qiu J. ; Sun Z. Mater. Today Energy 2018, 10, 280.
doi: 10.1016/j.mtener.2018.10.003 |
8 |
Xie H. ; Wang T. ; Liang J. ; Li Q. ; Sun S. Nano Today 2018, 21, 41.
doi: 10.1016/j.nantod.2018.05.001 |
9 |
Zhu W. ; Michalsky R. ; Metin Ö. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2013, 135, 16833.
doi: 10.1021/ja409445p |
10 |
Yang M. ; Zhang J. ; Cao Y. ; Wu M. ; Qian K. ; Zhang Z. ; Liu H. ; Wang J. ; Chen W. ; Huang W. ChemCatChem 2018, 10, 5128.
doi: 10.1002/cctc.201801423 |
11 |
Chen Z. ; Yao S. ; Liu L. J. Mater. Chem. A 2017, 5, 24651.
doi: 10.1039/C7TA07495F |
12 |
Zhang T. ; Qiu Y. ; Yao P. ; Li X. ; Zhang H. ACS Sustainable Chem. Eng. 2019, 7, 15190.
doi: 10.1021/acssuschemeng.9b01985 |
13 | Meng Y. C. ; Kuang S. Y. ; Liu H. ; Fan Q. ; Ma X. B. ; Zhang S. Acta Phys. -Chim. Sin. 2021, 37, 2006034. |
孟怡辰; 况思宇; 刘海; 范群; 马新宾; 张生. 物理化学学报, 2021, 37, 2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
14 |
Jia M. ; Fan Q. ; Liu S. ; Qiu J. ; Sun Z. Curr. Opin. Green Sustainable Chem. 2019, 16, 1.
doi: 10.1016/j.cogsc.2018.11.002 |
15 |
Angamuthu R. ; Byers P. ; Lutz M. ; Spek A. L. ; Bouwman E. Science 2010, 327, 313.
doi: 10.1126/science.1177981 |
16 |
Weng Z. ; Wu Y. ; Wang M. ; Jiang J. ; Yang K. ; Huo S. ; Wang X. -F. ; Ma Q. ; Brudvig G. W. ; Batista V. S. ; et al Nat. Commun. 2018, 9, 415.
doi: 10.1038/s41467-018-02819-7 |
17 |
Ma T. ; Fan Q. ; Tao H. ; Han Z. ; Jia M. ; Gao Y. ; Ma W. ; Sun Z. Nanotechnology 2017, 28, 472001.
doi: 10.1088/1361-6528/aa8f6f |
18 |
Ma T. ; Fan Q. ; Li X. ; Qiu J. ; Wu T. ; Sun Z. J. CO2 Util. 2019, 30, 168.
doi: 10.1016/j.jcou.2019.02.001 |
19 |
Sun Z. ; Ma T. ; Tao H. ; Fan Q. ; Han B. Chem 2017, 3, 560.
doi: 10.1016/j.chempr.2017.09.009 |
20 |
Bandi A. J. Electrochem. Soc. 1990, 137, 2157.
doi: 10.1149/1.2086903 |
21 |
Tayyebi E. ; Hussain J. ; Abghoui Y. ; Skúlason E. J. Phys. Chem. C 2018, 122, 10078.
doi: 10.1021/acs.jpcc.8b02224 |
22 |
Mistry H. ; Varela A. S. ; Bonifacio C. S. ; Zegkinoglou I. ; Sinev I. ; Choi Y. -W. ; Kisslinger K. ; Stach E. A. ; Yang J. C. ; Strasser P. ; et al Nat. Commun. 2016, 7, 12123.
doi: 10.1038/ncomms12123 |
23 |
Zhang R. ; Lv W. ; Lei L. Appl. Surf. Sci. 2015, 356, 24.
doi: 10.1016/j.apsusc.2015.08.006 |
24 |
Permyakova A. A. ; Herranz J. ; El Kazzi M. ; Diercks J. S. ; Povia M. ; Mangani L. R. ; Horisberger M. ; Pătru A. ; Schmidt T. J. ChemPhysChem 2019, 20, 3120.
doi: 10.1002/cphc.201900468 |
25 |
Chu S. ; Yan X. ; Choi C. ; Hong S. ; Robertson A. ; Masa J. ; Han B. ; Jung Y. ; Sun Z. Green Chem. 2020, 22, 6540.
doi: 10.1039/D0GC02279A |
26 |
Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073.
doi: 10.1021/acs.jpclett.5b01559 |
27 |
Kumar B. ; Atla V. ; Brian J. P. ; Kumari S. ; Nguyen T. Q. ; Sunkara M. ; Spurgeon J. M. Angew. Chem. Int. Ed. 2017, 56, 3645.
doi: 10.1002/anie.201612194 |
28 |
Peterson A. A. ; Abild-Pedersen F. ; Studt F. ; Rossmeisl J. ; Nørskov J. K. Energy Environ. Sci. 2010, 3, 1311.
doi: 10.1039/C0EE00071J |
29 |
Cheng T. ; Xiao H. ; Goddard W. A. J. Am. Chem. Soc. 2016, 138, 13802.
doi: 10.1021/jacs.6b08534 |
30 |
Schouten K. J. P. ; Qin Z. ; Pérez Gallent E. ; Koper M. T. M. J. Am. Chem. Soc. 2012, 134, 9864.
doi: 10.1021/ja302668n |
31 |
Gao D. ; Arán-Ais R. M. ; Jeon H. S. ; Roldan Cuenya B. Nat. Catal. 2019, 2, 198.
doi: 10.1038/s41929-019-0235-5 |
32 | Yang Y. ; Zhang Y. ; Hu J. S. ; Wan L. J. Acta Phys. -Chim. Sin. 2020, 36, 1906085. |
杨艳; 张云; 胡劲松; 万立骏. 物理化学学报, 2020, 36, 1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
33 |
Mistry H. ; Reske R. ; Zeng Z. ; Zhao Z. -J. ; Greeley J. ; Strasser P. ; Cuenya B. R. J. Am. Chem. Soc. 2014, 136, 16473.
doi: 10.1021/ja508879j |
34 |
Yang K. D. ; Ko W. R. ; Lee J. H. ; Kim S. J. ; Lee H. ; Lee M. H. ; Nam K. T. Angew. Chem. Int. Ed. 2017, 56, 796.
doi: 10.1002/anie.201610432 |
35 |
Zhang Y. -J. ; Sethuraman V. ; Michalsky R. ; Peterson A. A. ACS Catal. 2014, 4, 3742.
doi: 10.1021/cs5012298 |
36 |
Ma M. ; Djanashvili K. ; Smith W. A. Angew. Chem. Int. Ed. 2016, 55, 6680.
doi: 10.1002/anie.201601282 |
37 |
Xiang H. ; Rasul S. ; Hou B. ; Portoles J. ; Cumpson P. ; Yu E. H. ACS Appl. Mater. Interfaces 2020, 12, 601.
doi: 10.1021/acsami.9b16862 |
38 |
Wang H. ; Matios E. ; Wang C. ; Luo J. ; Lu X. ; Hu X. ; Li W. Nano Lett. 2019, 19, 3925.
doi: 10.1021/acs.nanolett.9b01197 |
39 |
Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 7231.
doi: 10.1021/ja3010978 |
40 |
Eilert A. ; Cavalca F. ; Roberts F. S. ; Osterwalder J. ; Liu C. ; Favaro M. ; Crumlin E. J. ; Ogasawara H. ; Friebel D. ; Pettersson L. ; et al J. Phys. Chem. Lett. 2017, 8, 285.
doi: 10.1021/acs.jpclett.6b02273 |
41 |
Favaro M. ; Xiao H. ; Cheng T. ; Goddard W. A. ; Yano J. ; Crumlin E. J. Proc. Natl. Acad. Sci. 2017, 114, 6706.
doi: 10.1073/pnas.1701405114 |
42 |
Fields M. ; Hong X. ; Nørskov J. K. ; Chan K. J. Phys. Chem. C 2018, 122, 16209.
doi: 10.1021/acs.jpcc.8b04983 |
43 |
Garza A. J. ; Bell A. T. ; Head-Gordon M. J. Phys. Chem. Lett. 2018, 9, 601.
doi: 10.1021/acs.jpclett.7b03180 |
44 |
Xiao H. ; Goddard W. A. ; Cheng T. ; Liu Y. Proc. Natl. Acad. Sci. 2017, 114, 6685.
doi: 10.1073/pnas.1702405114 |
45 |
Chou T. -C. ; Chang C. -C. ; Yu H. -L. ; Yu W. -Y. ; Dong C. -L. ; Velasco-Vélez J. -J. ; Chuang C. -H. ; Chen L. -C. ; Lee J. -F. ; Chen J. -M. ; et al J. Am. Chem. Soc. 2020, 142, 2857.
doi: 10.1021/jacs.9b11126 |
46 |
Velasco-Vélez J. -J. ; Jones T. ; Gao D. ; Carbonio E. ; Arrigo R. ; Hsu C. -J. ; Huang Y. -C. ; Dong C. -L. ; Chen J. -M. ; Lee J. -F. ; et al ACS Sustainable Chem. Eng. 2019, 7, 1485.
doi: 10.1021/acssuschemeng.8b05106 |
47 |
Yang P. -P. ; Zhang X. -L. ; Gao F. -Y. ; Zheng Y. -R. ; Niu Z. -Z. ; Yu X. ; Liu R. ; Wu Z. -Z. ; Qin S. ; Chi L. -P. ; et al J. Am. Chem. Soc. 2020, 142, 6400.
doi: 10.1021/jacs.0c01699 |
48 |
Zhu Q. ; Sun X. ; Yang D. ; Ma J. ; Kang X. ; Zheng L. ; Zhang J. ; Wu Z. ; Han B. Nat. Commun. 2019, 10, 3851.
doi: 10.1038/s41467-019-11599-7 |
49 |
Zhang W. ; Huang C. ; Xiao Q. ; Yu L. ; Shuai L. ; An P. ; Zhang J. ; Qiu M. ; Ren Z. ; Yu Y. J. Am. Chem. Soc. 2020, 142, 11417.
doi: 10.1021/jacs.0c01562 |
50 |
Tan X. ; Yu C. ; Zhao C. ; Huang H. ; Yao X. ; Han X. ; Guo W. ; Cui S. ; Huang H. ; Qiu J. ACS Appl. Mater. Interfaces 2019, 11, 9904.
doi: 10.1021/acsami.8b19111 |
51 |
Irfan Malik M. ; Malaibari Z. O. ; Atieh M. ; Abussaud B. Chem. Eng. Sci. 2016, 152, 468.
doi: 10.1016/j.ces.2016.06.035 |
52 |
Gao D. ; Zhang Y. ; Zhou Z. ; Cai F. ; Zhao X. ; Huang W. ; Li Y. ; Zhu J. ; Liu P. ; Yang F. ; et al J. Am. Chem. Soc. 2017, 139, 5652.
doi: 10.1021/jacs.7b00102 |
53 |
Lee C. W. ; Shin S. -J. ; Jung H. ; Nguyen D. L. T. ; Lee S. Y. ; Lee W. H. ; Won D. H. ; Kim M. G. ; Oh H. -S. ; Jang T. ; et al ACS Energy Letters 2019, 4, 2241.
doi: 10.1021/acsenergylett.9b01721 |
54 | Chu S. L. ; Li X. ; Robertson A. W. ; Sun Z. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009023. |
楚森林; 李欣; Alex W. Robertson; 孙振宇. 物理化学学报, 2021, 37, 2009023.
doi: 10.3866/PKU.WHXB202009023 |
|
55 |
Lee S. ; Park G. ; Lee J. ACS Catal. 2017, 7, 8594.
doi: 10.1021/acscatal.7b02822 |
56 |
He J. ; Dettelbach K. E. ; Salvatore D. A. ; Li T. ; Berlinguette C. P. Angew. Chem. Int. Ed. 2017, 56, 6068.
doi: 10.1002/anie.201612038 |
57 |
Li Y. ; Chu S. ; Shen H. ; Xia Q. ; Robertson A. W. ; Masa J. ; Siddiqui U. ; Sun Z. ACS Sustainable Chem. Eng. 2020, 8, 4948.
doi: 10.1021/acssuschemeng.0c00800 |
58 |
Ren D. ; Ang B. S. -H. ; Yeo B. S. ACS Catal. 2016, 6, 8239.
doi: 10.1021/acscatal.6b02162 |
59 |
Chen K. ; Zhang X. ; Williams T. ; Bourgeois L. ; MacFarlane D. R. Electrochim. Acta 2017, 239, 84.
doi: 10.1016/j.electacta.2017.04.019 |
60 |
An X. ; Li S. ; Yoshida A. ; Yu T. ; Wang Z. ; Hao X. ; Abudula A. ; Guan G. ACS Appl. Mater. Interfaces 2019, 11, 42114.
doi: 10.1021/acsami.9b13270 |
61 |
Larrazábal G. O. ; Martín A. J. ; Mitchell S. ; Hauert R. ; Pérez-Ramírez J. ACS Catal. 2016, 6, 6265.
doi: 10.1021/acscatal.6b02067 |
62 |
Yang H. -P. ; Yue Y. -N. ; Qin S. ; Wang H. ; Lu J. -X. Green Chem. 2016, 18, 3216.
doi: 10.1039/C6GC00091F |
63 |
Rasul S. ; Anjum D. H. ; Jedidi A. ; Minenkov Y. ; Cavallo L. ; Takanabe K. Angew. Chem. Int. Ed. 2015, 54, 2146.
doi: 10.1002/anie.201410233 |
64 |
Yang D. ; Zhu Q. ; Sun X. ; Chen C. ; Lu L. ; Guo W. ; Liu Z. ; Han B. Green Chem. 2018, 20, 3705.
doi: 10.1039/C8GC01552J |
65 |
Peña M. A. ; Fierro J. L. G. Chem. Rev. 2001, 101, 1981.
doi: 10.1021/cr980129f |
66 |
Lu J. ; Zhu C. ; Pan C. ; Lin W. ; Lemmon J. P. ; Chen F. ; Li C. ; Xie K. Sci. Adv. 2018, 4, eaar5100.
doi: 10.1126/sciadv.aar5100 |
67 |
Chen S. ; Su Y. ; Deng P. ; Qi R. ; Zhu J. ; Chen J. ; Wang Z. ; Zhou L. ; Guo X. ; Xia B. Y. ACS Catal. 2020, 10, 4640.
doi: 10.1021/acscatal.0c00847 |
68 |
Nur Hossain M. ; Chen S. ; Chen A. Appl. Catal. B 2019, 259, 118096.
doi: 10.1016/j.apcatb.2019.118096 |
69 |
Pang Y. ; Burdyny T. ; Dinh C. -T. ; Kibria M. G. ; Fan J. Z. ; Liu M. ; Sargent E. H. ; Sinton D. Green Chem. 2017, 19, 4023.
doi: 10.1039/C7GC01677H |
70 |
Wu M. ; Zhu C. ; Wang K. ; Li G. ; Dong X. ; Song Y. ; Xue J. ; Chen W. ; Wei W. ; Sun Y. ACS Appl. Mater. Interfaces 2020, 12, 11562.
doi: 10.1021/acsami.9b21153 |
71 |
Kim J. ; Choi W. ; Park J. W. ; Kim C. ; Kim M. ; Song H. J. Am. Chem. Soc. 2019, 141, 6986.
doi: 10.1021/jacs.9b00911 |
72 |
Jitaru M. ; Lowy D. A. ; Toma M. ; Toma B. C. ; Oniciu L. J. Appl. Electrochem. 1997, 27, 875.
doi: 10.1023/A:1018441316386 |
73 |
Chen Y. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 1986.
doi: 10.1021/ja2108799 |
74 |
Wu J. ; Risalvato F. G. ; Ma S. ; Zhou X. -D. J. Mater. Chem. A 2014, 2, 1647.
doi: 10.1039/C3TA13544F |
75 |
An X. ; Li S. ; Yoshida A. ; Wang Z. ; Hao X. ; Abudula A. ; Guan G. ACS Sustainable Chem. Eng. 2019, 7, 9360.
doi: 10.1021/acssuschemeng.9b00515 |
76 |
Zhang Q. ; Zhang Y. ; Mao J. ; Liu J. ; Zhou Y. ; Guay D. ; Qiao J. ChemSusChem 2019, 12, 1443.
doi: 10.1002/cssc.201802725 |
77 |
Cui C. ; Han J. ; Zhu X. ; Liu X. ; Wang H. ; Mei D. ; Ge Q. J. Catal. 2016, 343, 257.
doi: 10.1016/j.jcat.2015.12.001 |
78 |
Deng W. ; Zhang L. ; Li L. ; Chen S. ; Hu C. ; Zhao Z. -J. ; Wang T. ; Gong J. J. Am. Chem. Soc. 2019, 141, 2911.
doi: 10.1021/jacs.8b13786 |
79 |
Zhang W. ; Qin Q. ; Dai L. ; Qin R. ; Zhao X. ; Chen X. ; Ou D. ; Chen J. ; Chuong T. T. ; Wu B. ; Zheng N. Angew. Chem. Int. Ed. 2018, 57, 9475.
doi: 10.1002/anie.201804142 |
80 |
Lee S. ; Ju H. ; Machunda R. ; Uhm S. ; Lee J. K. ; Lee H. J. ; Lee J. J. Mater. Chem. A 2015, 3, 3029.
doi: 10.1039/C4TA03893B |
81 |
Gao D. ; Zhou H. ; Wang J. ; Miao S. ; Yang F. ; Wang G. ; Wang J. ; Bao X. J. Am. Chem. Soc. 2015, 137, 4288.
doi: 10.1021/jacs.5b00046 |
82 |
Zhu W. ; Zhang Y. -J. ; Zhang H. ; Lv H. ; Li Q. ; Michalsky R. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2014, 136, 16132.
doi: 10.1021/ja5095099 |
83 |
Li Q. ; Fu J. ; Zhu W. ; Chen Z. ; Shen B. ; Wu L. ; Xi Z. ; Wang T. ; Lu G. ; Zhu J. -J. ; Sun S. J. Am. Chem. Soc. 2017, 139, 4290.
doi: 10.1021/jacs.7b00261 |
84 |
Huo S. ; Weng Z. ; Wu Z. ; Zhong Y. ; Wu Y. ; Fang J. ; Wang H. ACS Appl. Mater. Interfaces 2017, 9, 28519.
doi: 10.1021/acsami.7b07707 |
85 |
Cheng Y. ; Hou P. ; Pan H. ; Shi H. ; Kang P. Appl. Catal. B 2020, 272, 118954.
doi: 10.1016/j.apcatb.2020.118954 |
86 |
Wang K. ; Liu D. ; Deng P. ; Liu L. ; Lu S. ; Sun Z. ; Ma Y. ; Wang Y. ; Li M. ; Xia B. Y. ; et al Nano Energy 2019, 64, 103954.
doi: 10.1016/j.nanoen.2019.103954 |
87 |
Fan L. ; Xia Z. ; Xu M. ; Lu Y. ; Li Z. Adv. Funct. Mater. 2018, 28, 1706289.
doi: 10.1002/adfm.201706289 |
88 |
Liu S. ; Xiao J. ; Lu X. F. ; Wang J. ; Wang X. ; Lou X. W. Angew. Chem. Int. Ed. 2019, 58, 8499.
doi: 10.1002/anie.201903613 |
89 |
Li F. ; Chen L. ; Knowles G. P. ; MacFarlane D. R. ; Zhang J. Angew. Chem. Int. Ed. 2017, 56, 505.
doi: 10.1002/anie.201608279 |
90 |
Xie X. ; Li Y. ; Liu Z. -Q. ; Haruta M. ; Shen W. Nature 2009, 458, 746.
doi: 10.1038/nature07877 |
91 |
Roy S. C. ; Varghese O. K. ; Paulose M. ; Grimes C. A. ACS Nano 2010, 4, 1259.
doi: 10.1021/nn9015423 |
92 |
Sun Y. ; Gao S. ; Lei F. ; Liu J. ; Liang L. ; Xie Y. Chem. Sci. 2014, 5, 3976.
doi: 10.1039/C4SC00565A |
93 |
Huang X. ; Cao T. ; Liu M. ; Zhao G. J. Phys. Chem. C 2013, 117, 26432.
doi: 10.1021/jp408630s |
94 |
Gao S. ; Lin Y. ; Jiao X. ; Sun Y. ; Luo Q. ; Zhang W. ; Li D. ; Yang J. ; Xie Y. Nature 2016, 529, 68.
doi: 10.1038/nature16455 |
95 |
Gao S. ; Jiao X. ; Sun Z. ; Zhang W. ; Sun Y. ; Wang C. ; Hu Q. ; Zu X. ; Yang F. ; Yang S. ; et al Angew. Chem. Int. Ed. 2016, 55, 698.
doi: 10.1002/anie.201509800 |
96 |
Yang H. ; Han N. ; Deng J. ; Wu J. ; Wang Y. ; Hu Y. ; Ding P. ; Li Y. ; Li Y. ; Lu J. Adv. Energy Mater. 2018, 8, 1801536.
doi: 10.1002/aenm.201801536 |
97 |
Han N. ; Wang Y. ; Yang H. ; Deng J. ; Wu J. ; Li Y. ; Li Y. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-018-03712-z |
98 |
Lee C. W. ; Hong J. S. ; Yang K. D. ; Jin K. ; Lee J. H. ; Ahn H. -Y. ; Seo H. ; Sung N. -E. ; Nam K. T. ACS Catal. 2018, 8, 931.
doi: 10.1021/acscatal.7b03242 |
99 |
Koh J. H. ; Won D. H. ; Eom T. ; Kim N. -K. ; Jung K. D. ; Kim H. ; Hwang Y. J. ; Min B. K. ACS Catal. 2017, 7, 5071.
doi: 10.1021/acscatal.7b00707 |
100 |
Kim S. ; Dong W. J. ; Gim S. ; Sohn W. ; Park J. Y. ; Yoo C. J. ; Jang H. W. ; Lee J. -L. Nano Energy 2017, 39, 44.
doi: 10.1016/j.nanoen.2017.05.065 |
101 |
Gong Q. ; Ding P. ; Xu M. ; Zhu X. ; Wang M. ; Deng J. ; Ma Q. ; Han N. ; Zhu Y. ; Lu J. ; et al Nat. Commun. 2019, 10, 2807.
doi: 10.1038/s41467-019-10819-4 |
102 |
Deng P. ; Wang H. ; Qi R. ; Zhu J. ; Chen S. ; Yang F. ; Zhou L. ; Qi K. ; Liu H. ; Xia B. Y. ACS Catal. 2020, 10, 743.
doi: 10.1021/acscatal.9b04043 |
103 |
Deng P. ; Yang F. ; Wang Z. ; Chen S. ; Zhou Y. ; Zaman S. ; Xia B. Y. Angew. Chem., Int. Ed. 2020, 59, 10807.
doi: 10.1002/anie.202000657 |
104 |
Chen Z. ; Mou K. ; Wang X. ; Liu L. Angew. Chem. Int. Ed. 2018, 57, 12790.
doi: 10.1002/anie.201807643 |
105 |
Li T. ; Wei H. ; Liu T. ; Zheng G. ; Liu S. ; Luo J. -L. ACS Appl. Mater. Interfaces 2019, 11, 22346.
doi: 10.1021/acsami.9b04580 |
106 |
Rabiee A. ; Nematollahi D. Mater. Chem. Phys. 2017, 193, 109.
doi: 10.1016/j.matchemphys.2017.02.016 |
107 |
Xia Z. ; Freeman M. ; Zhang D. ; Yang B. ; Lei L. ; Li Z. ; Hou Y. ChemElectroChem 2018, 5, 253.
doi: 10.1002/celc.201700935 |
108 |
Sun X. ; Lu L. ; Zhu Q. ; Wu C. ; Yang D. ; Chen C. ; Han B. Angew. Chem. Int. Ed. 2018, 57, 2427.
doi: 10.1002/anie.201712221 |
109 |
Chu S. ; Hong S. ; Masa J. ; Li X. ; Sun Z. Chem. Commun. 2019, 55, 12380.
doi: 10.1039/C9CC05435A |
110 |
White J. L. ; Bocarsly A. B. J. Electrochem. Soc. 2016, 163, H410.
doi: 10.1149/2.0681606jes |
111 |
Mou K. ; Chen Z. ; Yao S. ; Liu L. Electrochim. Acta 2018, 289, 65.
doi: 10.1016/j.electacta.2018.09.026 |
112 |
Won D. H. ; Shin H. ; Koh J. ; Chung J. ; Lee H. S. ; Kim H. ; Woo S. I. Angew. Chem. Int. Ed. 2016, 55, 9297.
doi: 10.1002/anie.201602888 |
113 |
Rosen J. ; Hutchings G. S. ; Lu Q. ; Forest R. V. ; Moore A. ; Jiao F. ACS Catal. 2015, 5, 4586.
doi: 10.1021/acscatal.5b00922 |
114 |
Quan F. ; Zhong D. ; Song H. ; Jia F. ; Zhang L. J. Mater. Chem. A 2015, 3, 16409.
doi: 10.1039/C5TA04102C |
115 |
Nguyen D. L. T. ; Jee M. S. ; Won D. H. ; Jung H. ; Oh H. -S. ; Min B. K. ; Hwang Y. J. ACS Sustainable Chem. Eng. 2017, 5, 11377.
doi: 10.1021/acssuschemeng.7b02460 |
116 |
Jeon H. S. ; Sinev I. ; Scholten F. ; Divins N. J. ; Zegkinoglou I. ; Pielsticker L. ; Cuenya B. R. J. Am. Chem. Soc. 2018, 140, 9383.
doi: 10.1021/jacs.8b05258 |
117 |
Geng Z. ; Kong X. ; Chen W. ; Su H. ; Liu Y. ; Cai F. ; Wang G. ; Zeng J. Angew. Chem. Int. Ed. 2018, 57, 6054.
doi: 10.1002/anie.201711255 |
118 |
Bachiller-Baeza B. ; Rodriguez-Ramos I. ; Guerrero-Ruiz A. Langmuir 1998, 14, 3556.
doi: 10.1021/la970856q |
119 |
Miao Z. ; Hu P. ; Nie C. ; Xie H. ; Fu W. ; Li Q. J. Energy Chem. 2019, 38, 114.
doi: 10.1016/j.jechem.2019.01.010 |
120 |
Sekimoto T. ; Deguchi M. ; Yotsuhashi S. ; Yamada Y. ; Masui T. ; Kuramata A. ; Yamakoshi S. Electrochem. Commun. 2014, 43, 95.
doi: 10.1016/j.elecom.2014.03.023 |
121 |
Tsuneoka H. ; Teramura K. ; Shishido T. ; Tanaka T. J. Phys. Chem. C 2010, 114, 8892.
doi: 10.1021/jp910835k |
122 |
Yuliati L. ; Itoh H. ; Yoshida H. Chem. Phys. Lett. 2008, 452, 178.
doi: 10.1016/j.cplett.2007.12.051 |
123 |
Spataru N. ; Tokuhiro K. ; Terashima C. ; Rao T. N. ; Fujishima A. J. Appl. Electrochem. 2003, 33, 1205.
doi: 10.1023/B:JACH.0000003866.85015.b6 |
124 |
Karamad M. ; Hansen H. A. ; Rossmeisl J. ; Nørskov J. K. ACS Catal. 2015, 5, 4075.
doi: 10.1021/cs501542n |
125 |
Lum Y. ; Ager J. W. Angew. Chem. Int. Ed. 2018, 57, 551.
doi: 10.1002/anie.201710590 |
[1] | Yuehan Cao, Rui Guo, Minzhi Ma, Zeai Huang, Ying Zhou. Effects of Electron Density Variation of Active Sites in CO2 Activation and Photoreduction: A Review [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303029-. |
[2] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[3] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[4] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[5] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[6] | Zhiyang Chen, Yating Tang, Ze Lü, Xiaohan Meng, Qianwei Liang, Jianguo Feng. Citronella Oil Nanoemulsion: Formulation, Characterization, Antibacterial Activity, and Cytotoxicity [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2205053-. |
[7] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[8] | Yichen Meng, Siyu Kuang, Hai Liu, Qun Fan, Xinbin Ma, Sheng Zhang. Recent Advances in Electrochemical CO2 Reduction Using Copper-Based Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006034-. |
[9] | Tian Wang, Taiyang Zhang, Yuetian Chen, Yixin Zhao. Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007021-. |
[10] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-. |
[11] | Jiaxin Wang, Weili Shen, Jinning Hu, Jun Chen, Xiaoming Li, Haibo Zeng. Mechanisms and Applications of Laser Action on Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008051-. |
[12] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-. |
[13] | Sidong Zhang, Yuan Liu, Muyao Qi, Anmin Cao. Localized Surface Doping for Improved Stability of High Energy Cathode Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011007-. |
[14] | Han Wang, Hanwen An, Hongmei Shan, Lei Zhao, Jiajun Wang. Research Progress on Interfaces of All-Solid-State Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2007070-. |
[15] | Mingli Cai, Liu Yao, Jun Jin, Zhaoyin Wen. In situ Lithiophilic ZnO Layer Constructed using Aqueous Strategy for a Stable Li-Garnet Interface [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009006-. |
|