Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2010025.doi: 10.3866/PKU.WHXB202010025
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Zengqiang Gao1, Congyong Wang2,3, Junjun Li1, Yating Zhu1, Zhicheng Zhang1,*(), Wenping Hu1,2,*()
Received:
2020-10-13
Accepted:
2020-11-25
Published:
2020-11-30
Contact:
Zhicheng Zhang,Wenping Hu
E-mail:zczhang19@tju.edu.cn;huwp@tju.edu.cn
About author:
Email: huwp@tju.edu.cn (W.H.); Tel: +86-22-83613363 (Z.Z.)Supported by:
Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities[J]. Acta Phys. -Chim. Sin. 2021, 37(7), 2010025. doi: 10.3866/PKU.WHXB202010025
"
Type | Catalyst | Electrolyte | Potential | FE | Ref. |
CO2RR | Fe_MOF-525 films | 1.0 mol·L-1 TBAPF6 + 1 mol·L-1 TFE | -1.3 V vs. NHE | ∼100% (CO + H2) | |
HKUST-1 (Cu, Ru) | 0.5 mol·L-1 KHCO3 | -1.0 V vs. Ag/AgCl | 47.2% (alcohol) | ||
Al2(OH)2TCPP-Co | 0.5 mol·L-1 potassium carbonate | -0.7 V vs. RHE | 76% (CO) | ||
Ag@Al-PMOFs | 0.1 mol·L-1 KHCO3 | -1.1 V vs. RHE | 55.8% (CO) | ||
Cu2(CuTCPP) | 0.5 mol·L-1 EMIMBF4 | -1.55 V vs. Ag/Ag+ | 68.4% (formate); 16.8% (acetate) | ||
bismuthine (Bi-ene) | 1 mol·L-1 KOH | -0.57V vs. RHE | 99.8% (formate) | ||
ORR | Ni3(HITP)2 | 0.1 mol·L-1 KOH | ∼0.75 V vs. RHE | 63% (H2O2) | |
(Co)PCN222 | 0.1 mol·L-1 HClO4 | 0.43V vs. RHE | |||
NRR | Mo3(HAB)2 | 0.18 V | |||
Co3(HHTP)2 | 0.5 mol·L-1 LiClO4 | –0.40 V vs. RHE | 3.34% | ||
OER | {Fe3(μ3-O)(bdc)3}4{Co2(na)4(LT)2}3 | water at pH = 13 | 225 mV | ||
Fe/Ni-BTC | 0.1 mol·L-1 KOH | 270 mV | 95% | ||
NiCo-UMOFNs | 1.0 mol·L-1 KOH | ∼189 mV | 99.3% | ||
MAF-X27-OH(Cu) | 1.0 mol·L-1 KOH | 292 mV | 100% | ||
NiFe-NFF | 1.0 mol·L-1 KOH | 227 mV | ~100% | ||
NiFe MOF/OM-NFH | 1.0 mol·L-1 KOH | 270 mV | |||
HER | NiFe-MOF | 0.1 mol·L-1 KOH | 240 mV | ||
Pd@MOF-74 | 0.5 mol·L-1 H2SO4 | -0.106 V vs. RHE | |||
Ni3(Ni3·HAHATN)2 | 0.1 mol·L-1 KOH | 115 mV |
1 |
Li H. ; Eddaoudi M. ; O'Keeffe M. ; Yaghi O. M. Nature 1999, 402, 276.
doi: 10.1038/46248 |
2 |
Tranchemontagne D. J. ; Mendoza-Cortés J. L. ; O'Keeffe M. ; Yaghi O. M. Chem. Soc. Rev. 2009, 38, 1257.
doi: 10.1039/B817735J |
3 |
Zhang Z. ; Chen Y. ; Xu X. ; Zhang J. ; Xiang G. ; He W. ; Wang X. Angew. Chem. Int. Ed. 2014, 53, 429.
doi: 10.1002/anie.201308589 |
4 |
Zhou H.-C. ; Long J. R. ; Yaghi O. M. Chem. Rev 2012, 112, 673.
doi: 10.1021/cr300014x |
5 |
Furukawa H. ; Cordova K. E. ; O'Keeffe M. ; Yaghi O. M. Science 2013, 341, 1230444.
doi: 10.1126/science.1230444 |
6 |
Chen X.-H. ; Wei Q. ; Hong J.-D. ; Xu R. ; Zhou T.-H. Rare Met. 2019, 38, 413.
doi: 10.1007/s12598-019-01259-6 |
7 |
Bavykina A. ; Kolobov N. ; Khan I. S. ; Bau J. A. ; Ramirez A. ; Gascon J. Chem. Rev 2020, 120, 8468.
doi: 10.1021/acs.chemrev.9b00685 |
8 |
Wang Y. ; Li Q. ; Shi W. ; Cheng P. Chin. Chem. Lett. 2020, 31, 1768.
doi: 10.1016/j.cclet.2020.01.010 |
9 |
Zhang K. ; Liang Z. ; Zou R. Sci. China Mater. 2020, 63, 7.
doi: 10.1007/s11426-019-9613-1 |
10 |
Song Z. ; Zhang L. ; Doyle-Davis K. ; Fu X. ; Luo J.-L. ; Sun X. Adv. Energy Mater. 2020, 10, 2001561.
doi: 10.1002/aenm.202001561 |
11 |
Zhao M. ; Huang Y. ; Peng Y. ; Huang Z. ; Ma Q. ; Zhang H. Chem. Soc. Rev. 2018, 47, 6267.
doi: 10.1039/C8CS00268A |
12 |
Liu J. ; Wöll C. Chem. Soc. Rev. 2017, 46, 5730.
doi: 10.1039/C7CS00315C |
13 |
Li B. ; Wen H.-M. ; Cui Y. ; Zhou W. ; Qian G. ; Chen B. Adv. Mater. 2016, 28, 8819.
doi: 10.1002/adma.201601133 |
14 |
Ding M. ; Flaig R. W. ; Jiang H.-L. ; Yaghi O. M. Chem. Soc. Rev 2019, 48, 2783.
doi: 10.1039/C8CS00829A |
15 |
Li J.-R. ; Sculley J. ; Zhou H.-C. Chem. Rev 2012, 112, 869.
doi: 10.1021/cr200190s |
16 |
Zhang Z. ; Chen Y. ; He S. ; Zhang J. ; Xu X. ; Yang Y. ; Nosheen F. ; Saleem F. ; He W. ; Wang X. Angew. Chem. Int. Ed 2014, 53, 12517.
doi: 10.1002/anie.201406484 |
17 |
Dhakshinamoorthy A. ; Asiri A. M. ; Garcia H. Adv. Mater 2019, 31, 1900617.
doi: 10.1002/adma.201900617 |
18 |
Sun L. ; Campbell M. G. ; Dincă M. Angew. Chem. Int. Ed 2016, 55, 3566.
doi: 10.1002/anie.201506219 |
19 |
Talin A. A. ; Centrone A. ; Ford A. C. ; Foster M. E. ; Stavila V. ; Haney P. ; Kinney R. A. ; Szalai V. ; El Gabaly F. ; Yoon H.P. ;et al Science 2014, 343, 66.
doi: 10.1126/science.1246738 |
20 |
Li W.-H. ; Deng W.-H. ; Wang G.-E. ; Xu G. Energy Chem. 2020, 2, 100029.
doi: 10.1016/j.enchem.2020.100029 |
21 |
Li W. H. ; Ding K. ; Tian H. R. ; Yao M.-S. ; Nath B. ; Deng W.-H. ; Wang Y. ; Xu G. Adv. Funct. Mater 2017, 27, 1702067.
doi: 10.1002/adfm.201702067 |
22 |
Ko M. ; Mendecki L. ; Mirica K. A. Chem. Commun. 2018, 54, 7873.
doi: 10.1039/C8CC02871K |
23 |
Li P. ; Wang B. Isr. J. Chem. 2018, 58, 1010.
doi: 10.1002/ijch.201800078 |
24 |
Stavila V. ; Talin A. A. ; Allendorf M. D. Chem. Soc. Rev 2014, 43, 5994.
doi: 10.1039/C4CS00096J |
25 |
Bhardwaj S. K. ; Bhardwaj N. ; Kaur R. ; Mehta J. ; Sharma A. L. ; Kim K.-H. ; Deep A. J. Mater. Chem. A 2018, 6, 14992.
doi: 10.1039/C8TA04220A |
26 |
Clough A. J. ; Yoo J. W. ; Mecklenburg M. H. ; Marinescu S. C. J. Am. Chem. Soc. 2015, 137, 118.
doi: 10.1021/ja5116937 |
27 |
Miner E. M. ; Fukushima T. ; Sheberla D. ; Sun L. ; Surendranath Y. ; Dincă M. Nat. Commun. 2016, 7, 10942.
doi: 10.1038/ncomms10942 |
28 |
Miner E. M. ; Wang L. ; Dincă M. Chem. Sci. 2018, 9, 6286.
doi: 10.1039/C8SC02049C |
29 |
Cheng W.-Z. ; Liang J.-L. ; Yin H.-B. ; Wang Y.-J. ; Yan W.-F. ; Zhang J.-N. Rare Met. 2020, 39, 815.
doi: 10.1007/s12598-020-01440-2 |
30 |
Liu X. ; Yue T. ; Qi K. ; Qiu Y. ; Xia B. Y. ; Guo X. Chin. Chem. Lett 2020, 31, 2189.
doi: 10.1016/j.cclet.2019.12.009 |
31 |
Zhao R. ; Liang Z. ; Zou R. ; Xu Q. Joule 2018, 2, 2235.
doi: 10.1016/j.joule.2018.09.019 |
32 |
Shinde S. S. ; Lee C. H. ; Jung J.-Y. ; Wagh N. K. ; Kim S.-H. ; Kim D.-H. ; Lin C. ; Lee S. U. ; Lee J.-H. Energy Environ. Sci. 2019, 12, 727.
doi: 10.1039/C8EE02679C |
33 |
Liu J. ; Song X. ; Zhang T. ; Liu S. ; Wen H. ; Chen L. Angew. Chem. Int. Ed. 2020, 59, 2.
doi: 10.1002/anie.202006102 |
34 |
Sheberla D. ; Bachman J. C. ; Elias J. S. ; Sun C.-J. ; Shao-Horn Y. ; Dincă M. Nat. Mater. 2017, 16, 220.
doi: 10.1038/nmat4766 |
35 |
Du W. ; Bai Y.-L. ; Yang Z. ; Li R. ; Zhang D. ; Ma Z. ; Yuan A. ; Xu J. Chin. Chem. Lett 2020, 31, 2309.
doi: 10.1016/j.cclet.2020.04.017 |
36 |
Campbell M. G. ; Sheberla D. ; Liu S. F. ; Swager T. M. ; Dincă M. Angew. Chem. Int. Ed 2015, 54, 4349.
doi: 10.1002/anie.201411854 |
37 |
Campbell M. G. ; Liu S. F. ; Swager T. M. ; Dincă M. J. Am. Chem. Soc 2015, 137, 13780.
doi: 10.1021/jacs.5b09600 |
38 |
Aubrey M. L. ; Kapelewski M. T. ; Melville J. F. ; Oktawiec J. ; Presti D. ; Gagliardi L. ; Long J. R. J. Am. Chem. Soc 2019, 141, 5005.
doi: 10.1021/jacs.9b00654 |
39 |
Meng Z. ; Aykanat A. ; Mirica K. A. J. Am. Chem. Soc 2019, 141, 2046.
doi: 10.1021/jacs.8b11257 |
40 |
Wu G. ; Huang J. ; Zang Y. ; He J. ; Xu G. J. Am. Chem. Soc 2017, 139, 1360.
doi: 10.1021/jacs.6b08511 |
41 |
Huang X. ; Sheng P. ; Tu Z. ; Zhang F. ; Wang J. ; Geng H. ; Zou Y. ; Di C.-A. ; Yi Y. ; Sun Y. ; Xu W. ; Zhu D. Nat. Commun. 2015, 6, 7408.
doi: 10.1038/ncomms8408 |
42 |
Lahiri N. ; Lotfizadeh N. ; Tsuchikawa R. ; Deshpande V. V. ; Louie J. J. Am. Chem. Soc 2017, 139, 19.
doi: 10.1021/jacs.6b09889 |
43 |
Wang B. ; Luo Y. ; Liu B. ; Duan G. ACS Appl. Mater. Interfaces 2019, 11, 35935.
doi: 10.1021/acsami.9b14319 |
44 |
Song X. ; Wang X. ; Li Y. ; Zheng C. ; Zhang B. ; Di C.-A. ; Li F. ; Jin C. ; Mi W. ; Chen L. ; Hu W. Angew. Chem. Int. Ed 2020, 59, 1118.
doi: 10.1002/anie.201911543 |
45 |
Zhao W. ; Peng J. ; Wang W. ; Liu S. ; Zhao Q. ; Huang W. Coordin. Chem. Rev. 2018, 377, 44.
doi: 10.1016/j.ccr.2018.08.023 |
46 |
Dong R. ; Zhang Z. ; Tranca D.C. ; Zhou S. ; Wang M. ; Adler P. ; Liao Z. ; Liu F. ; Sun Y. ; Shi W. ;et al Nat. Commun 2018, 9, 2637.
doi: 10.1038/s41467-018-05141-4 |
47 |
Yang C. ; Dong R. ; Wang M. ; Petkov P. S. ; Zhang Z. ; Wang M. ; Han P. ; Ballabio M. ; Bräuninger S.A. ; Liao Z. ;et al Nat. Commun. 2019, 10, 3260.
doi: 10.1038/s41467-019-11267-w |
48 |
Qiu T. ; Liang Z. ; Guo W. ; Tabassum H. ; Gao S. ; Zou R. ACS Energy Lett. 2020, 5, 520.
doi: 10.1021/acsenergylett.9b02625 |
49 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
50 |
Liu J. ; Zhu D. ; Guo C. ; Vasileff A. ; Qiao S.-Z. Adv. Energy Mater. 2017, 7, 1700518.
doi: 10.1002/aenm.201700518 |
51 |
Wang H.-F. ; Chen L. ; Pang H. ; Kaskel S. ; Xu Q. Chem. Soc. Rev. 2020, 49, 1414.
doi: 10.1039/C9CS00906J |
52 |
Xie L. ; Skorupskii G. ; Dincă M. Chem. Rev. 2020, 120, 8536.
doi: 10.1021/acs.chemrev.9b00766 |
53 |
Sheberla D. ; Sun L. ; Blood-Forsythe M. A. ; Er S. ; Wade C. R. ; Brozek C. K. ; Aspuru-Guzik A. ; Dincă M. J. Am. Chem. Soc 2014, 136, 8859.
doi: 10.1021/ja502765n |
54 |
Narayan T. C. ; Miyakai T. ; Seki S. ; Dincă M. J. Am. Chem. Soc 2012, 134, 12932.
doi: 10.1021/ja3059827 |
55 |
Park S. S. ; Hontz E. R. ; Sun L. ; Hendon C. H. ; Walsh A. ; Van Voorhis T. ; Dincă M. J. Am. Chem. Soc. 2015, 137, 1774.
doi: 10.1021/ja512437u |
56 |
Xie L. S. ; Alexandrov E. V. ; Skorupskii G. ; Proserpio D. M. ; Dincă M. Chem. Sci 2019, 10, 8558.
doi: 10.1039/C9SC03348C |
57 |
Pathak A. ; Shen J.-W. ; Usman M. ; Wei L.-F. ; Mendiratta S. ; Chang Y.-S. ; Sainbileg B. ; Ngue C.-M ; Chen R.-S. ; Hayashi M. ;et al Nat. Commun. 2019, 10, 1721.
doi: 10.1038/s41467-019-09682-0 |
58 |
Xie L. ; Skorupskii G. ; Dincă M. Chem. Rev 2020, 120, 8536.
doi: 10.1021/acs.chemrev.9b00766 |
59 |
Makiura R. ; Motoyama S. ; Umemura Y. ; Yamanaka H. ; Sakata O. ; Kitagawa H. Nat. Mater. 2010, 9, 565.
doi: 10.1038/nmat2769 |
60 |
Dong R. ; Pfeffermann M. ; Liang H. ; Zheng Z. ; Zhu X. ; Zhang J. ; Feng X. Angew. Chem. Int. Ed 2015, 54, 12058.
doi: 10.1002/anie.201506048 |
61 |
Kambe T. ; Sakamoto R. ; Hoshiko K. ; Takada K. ; Miyachi M. ; Ryu J.-H. ; Sasaki S. ; Kim J. ; Nakazato K. ; Takata M. ;et al J. Am. Chem. Soc. 2013, 135, 2462.
doi: 10.1021/ja312380b |
62 |
Pal T. ; Kambe T. ; Kusamoto T. ; Foo M. L. ; Matsuoka R. ; Sakamoto R. ; Nishihara H. ChemPlusChem 2015, 80, 1255.
doi: 10.1002/cplu.201500206 |
63 |
Sun X. ; Wu K.-H. ; Sakamoto R. ; Kusamoto T. ; Maeda H. ; Ni X. ; Jiang W. ; Liu F. ; Sasaki S. ; Masunaga H. ;et al Chem. Sci 2017, 8, 8078.
doi: 10.1039/C7SC02688A |
64 |
Pal T. ; Doi S. ; Maeda H. ; Wada K. ; Tan C. M. ; Fukui N. ; Sakamoto R. ; Tsuneyuki S. ; Sasaki S. ; Nishihara H. Chem. Sci 2019, 10, 5218.
doi: 10.1039/C9SC01144G |
65 |
Huang X. ; Li H. ; Tu Z. ; Liu L. ; Wu X. ; Chen J. ; Liang Y. ; Zou Y. ; Yi Y. ; Sun J. ; et al J. Am. Chem. Soc 2018, 140, 15153.
doi: 10.1021/jacs.8b07921 |
66 |
Sheberla D. ; Bachman J. C. ; Elias J. S. ; Sun C.-J. ; Shao-Horn Y. ; Dincă M. Nat. Mater 2017, 16, 220.
doi: 10.1038/nmat4766 |
67 |
Du W. ; Bai Y.-L. ; Yang Z. ; Li R. ; Zhang D. ; Ma Z. ; Yuan A. ; Xu J. Chin. Chem. Lett 2020, 31, 2309.
doi: 10.1016/j.cclet.2020.04.017 |
68 |
Campbell M. G. ; Sheberla D. ; Liu S. F. ; Swager T. M. ; Dincă M. Angew. Chem. Int. Ed 2015, 54, 4349.
doi: 10.1002/anie.201411854 |
69 |
Campbell M. G. ; Liu S. F. ; Swager T. M. ; Dincă M. J. Am. Chem. Soc. 2015, 137, 13780.
doi: 10.1021/jacs.5b09600 |
70 |
Dunwell M. ; Lu Q. ; Heyes J. M. ; Rosen J. ; Chen J. G. ; Yan Y. ; Jiao F. ; Xu B. J. Am. Chem. Soc. 2017, 139, 3774.
doi: 10.1021/jacs.6b13287 |
71 |
Zhao C. ; Dai X. ; Yao T. ; Chen W. ; Wang X. ; Wang J. ; Yang J. ; Wei S. ; Wu Y. ; Li Y. J. Am. Chem. Soc. 2017, 139, 8078.
doi: 10.1021/jacs.7b02736 |
72 |
Lu Y. ; Zhang J. ; Wei W. ; Ma D. D. ; Wu X. T. ; Zhu Q. L. ACS Appl. Mater. Interfaces 2020, 12, 37986.
doi: 10.1021/acsami.0c06537 |
73 |
Li X. ; Zhu Q. L. EnergyChem 2020, 2, 100033.
doi: 10.1016/j.enchem.2020.100033 |
74 |
Ma D. D. ; Zhu Q. L. Coord. Chem. Rev. 2020, 422, 213483.
doi: 10.1016/j.ccr.2020.213483 |
75 |
Aubrey M. L. ; Kapelewski M. T. ; Melville J. F. ; Oktawiec J. ; Presti D. ; Gagliardi L. ; Long J. R. J. Am. Chem. Soc. 2019, 141, 5005.
doi: 10.1021/jacs.9b00654 |
76 |
Meng Z. ; Aykanat A. ; Mirica K. A. J. Am. Chem. Soc. 2019, 141, 2046.
doi: 10.1021/jacs.8b11257 |
77 |
Hod I. ; Sampson M. D. ; Deria P. ; Kubiak C. P. ; Farha O. K. ; Hupp J. T. ACS Catal 2015, 5, 6302.
doi: 10.1021/acscatal.5b01767 |
78 |
Albo J. ; Vallejo D. ; Beobide G. ; Castillo O. ; Castaño P. ; Irabien A. ChemSusChem 2017, 10, 1100.
doi: 10.1002/cssc.201600693 |
79 |
Dong B.-X. ; Qian S.-L. ; Bu F.-Y. ; Wu Y.-C. ; Feng L.-G. ; Teng Y.-L. ; Liu W.-L. ; Li Z.-W. ACS Appl. Energy Mater 2018, 1, 4662.
doi: 10.1021/acsaem.8b00797 |
80 |
Perfecto-Irigaray M. ; Albo J. ; Beobide G. ; Castillo O. ; Irabien A. ; Pérez-Yáñez S. RSC Adv 2018, 8, 21092.
doi: 10.1039/C8RA02676A |
81 |
Qiu Y.-L. ; Zhong H.-X. ; Zhang T.-T. ; Xu W.-B. ; Su P.-P. ; Li X.-F. ; Zhang H.-M. ACS Appl. Mater. Interfaces 2018, 10, 2480.
doi: 10.1021/acsami.7b15255 |
82 |
Kornienko N. ; Zhao Y. ; Kley C. S. ; Zhu C. ; Kim D. ; Lin S. ; Chang C. J. ; Yaghi O. M. ; Yang P. J. Am. Chem. Soc 2015, 137, 14129.
doi: 10.1021/jacs.5b08212 |
83 |
Guntern Y. T. ; Pankhurst J. R. ; Vávra J. ; Mensi M. ; Mantella V. ; Schouwink P. ; Buonsanti R. Angew. Chem. Int. Ed. 2019, 58, 12632.
doi: 10.1002/anie.201905172 |
84 |
Wu J.-X. ; Hou S.-Z. ; Zhang X.-D. ; Xu M. ; Yang H.-F. ; Cao P.-S. ; Gu Z.-Y. Chem. Sci 2019, 10, 2199.
doi: 10.1039/C8SC04344B |
85 |
Cao C. ; Ma D. D. ; Gu J. F. ; Xie X. ; Zeng G. ; Li X. ; Han S. G. ; Zhu Q. L. ; Wu X. T. ; Xu Q. Angew. Chem. Int. Ed. 2020, 59, 15014.
doi: 10.1002/anie.202005577 |
86 |
Brezny A. C. ; Johnson S. I. ; Raugei S. ; Mayer J. M. J. Am. Chem. Soc. 2020, 142, 4108.
doi: 10.1021/jacs.9b13654 |
87 |
Pegis M. L. ; Wise C. F. ; Martin D. J. ; Mayer J. M. Chem. Rev. 2018, 118, 2340.
doi: 10.1021/acs.chemrev.7b00542 |
88 |
Zhao S. ; Yin H. ; Du L. ; He L. ; Zhao K. ; Chang L. ; Yin G. ; Zhao H. ; Liu S. ; Tang Z. ACS Nano 2014, 8, 12660.
doi: 10.1021/nn505582e |
89 |
Lai Q. ; Zheng L. ; Liang Y. ; He J. ; Zhao J. ; Chen J. ACS Catal 2017, 7, 1655.
doi: 10.1021/acscatal.6b02966 |
90 |
Guo J. ; Li Y. ; Cheng Y. ; Dai L. ; Xiang Z. ACS Nano 2017, 11, 8379.
doi: 10.1021/acsnano.7b03807 |
91 |
Yin P. ; Yao T. ; Wu Y. ; Zheng L. ; Lin Y. ; Liu W. ; Ju H. ; Zhu J. ; Hong X. ; Deng Z. ; et al Angew. Chem. Int. Ed. 2016, 55, 10800.
doi: 10.1002/anie.201604802 |
92 |
Liu X.-H. ; Hu W.-L. ; Jiang W.-J. ; Yang Y.-W. ; Niu S. ; Sun B. ; Wu J. ; Hu J.-S. ACS Appl. Mater. Interfaces 2017, 9, 28473.
doi: 10.1021/acsami.7b07410 |
93 |
Yoon H. ; Lee S. ; Oh S. ; Park H. ; Choi S. ; Oh M. Small 2019, 15, 1805232.
doi: 10.1002/smll.201805232 |
94 |
Chen G. ; Stevens M. B. ; Liu Y. ; King L. A. ; Park J. ; Kim T. R. ; Bao Z. ; Sinclair R. ; Jaramillo T. F. ; Bao Z. Small Methods 2020, 4, 2000085.
doi: 10.1002/smtd.202000085 |
95 |
Roger I. ; Shipman M. A. ; Symes M. D. Nat. Rev. Chem. 2017, 1, 1.
doi: 10.1038/s41570-016-0003 |
96 |
Chen W. ; Pei J. ; He C.-T. ; Wan J. ; Ren H. ; Wang Y. ; Dong J. ; Wu K. ; Cheong W.-C. ; Mao J. ;et al Adv. Mater. 2018, 30, 1800396.
doi: 10.1002/adma.201800396 |
97 |
Liu T. ; Li P. ; Yao N. ; Cheng G. ; Chen S. ; Luo W. ; Yin Y. Angew. Chem. Int. Ed. 2019, 306, 627.
doi: 10.1002/anie.201901409 |
98 |
Duan J. ; Chen S. ; Zhao C. Nat. Commun. 2017, 8, 15341.
doi: 10.1038/ncomms15341 |
99 |
Zheng F. ; Zheng C. ; Gao X. ; Du C. ; Zhang Z. ; Chen W. Electrochim. Acta 2019, 7, 9743.
doi: 10.1016/j.electacta.2019.03.175 |
100 |
Huang H. ; Zhao Y. ; Bai Y. ; Li F. ; Zhang Y. ; Chen Y. Adv. Sci. 2020, 7, 2000012.
doi: 10.1002/advs.202000012 |
101 |
Yang C. ; Zhu Y. ; Liu J. ; Qin Y. ; Wang H. ; Liu H. ; Chen Y. ; Zhang Z. ; Hu W. Nano Energy 2020, 77, 105126.
doi: 10.1016/j.nanoen.2020.105126 |
102 |
Geng Z. ; Liu Y. ; Kong X. ; Li P. ; Li K. ; Liu Z. ; Du J. ; Shu M. ; Si R. ; Zeng J. Adv. Mater 2018, 30, 1803498.
doi: 10.1002/adma.201803498 |
103 |
Guo C. ; Ran J. ; Vasileff A. ; Qiao S.-Z. Energy Environ. Sci. 2018, 11, 45.
doi: 10.1039/C7EE02220D |
104 |
Yuan L. ; Wu Z. ; Jiang W. ; Tang T. ; Niu S. ; Hu J.-S. Nano Res. 2020, 13, 1376.
doi: 10.1007/s12274-020-2637-8 |
105 |
Abghoui Y. ; Garden A. L. ; Howalt J. G. ; Vegge T. ; Skúlason E. ACS Catal 2016, 6, 635.
doi: 10.1021/acscatal.5b01918 |
106 |
Fukushima T. ; Drisdell W. ; Yano J. ; Surendranath Y. J. Am. Chem. Soc 2015, 137, 10926.
doi: 10.1021/jacs.5b06737 |
107 |
Cui Q. ; Qin G. ; Wang W. ; K. R G. ; Du A. ; Sun Q. J. Mater. Chem. A 2019, 7, 14510.
doi: 10.1039/C9TA02926E |
108 |
Xiong W. ; Cheng X. ; Wang T. ; Luo Y. ; Feng J. ; Lu S. ; Asiri A. M. ; Li W. ; Jiang Z. ; Sun X. Nano Res. 2020, 13, 1008.
doi: 10.1007/s12274-020-2733-9 |
109 |
Zhou J. ; Dou Y. ; Zhou A. ; Guo R.-M. ; Zhao M.-J. ; Li J.-R. Adv. Energy Mater. 2017, 7, 1602643.
doi: 10.1002/aenm.201602643 |
110 | Li M. ; Xia Z. ; Huang Y. ; Tao L. ; Chao Y. ; Yin K. ; Yang W. ; Yang W. ; Yu Y. ; Guo S. Acta Phys. -Chim. Sin. 2020, 36, 1912049. |
李蒙刚; 夏仲泓; 黄雅荣; 陶璐; 晁玉广; 尹坤; 杨文秀; 杨微微; 于永生; 郭少军; 物理化学学报, 2020, 36, 1912049.
doi: 10.3866/PKU.WHXB201912049 |
|
111 |
Zheng F. ; Zhang Z. ; Xiang D. ; Li P. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. J. Colloid Interf. Sci. 2019, 555, 541.
doi: 10.1016/j.jcis.2019.08.005 |
112 |
Shen J.-Q. ; Liao P.-Q. ; Zhou D.-D. ; He C.-T. ; Wu J.-X. ; Zhang W.-X. ; Zhang J.-P. ; Chen X.-M. J. Am. Chem. Soc 2017, 139, 1778.
doi: 10.1021/jacs.6b12353 |
113 |
Wang L. ; Wu Y. ; Cao R. ; Ren L. ; Chen M. ; Feng X. ; Zhou J. ; Wang B. ACS Appl. Mater. Interfaces 2016, 8, 16736.
doi: 10.1021/acsami.6b05375 |
114 |
Zhao S. ; Wang Y. ; Dong J. ; He C.-T. ; Yin H. ; An P. ; Zhao K. ; Zhang X. ; Gao C. ; Zhang L. ;et al Nat. Energy 2016, 1, 16184.
doi: 10.1038/nenergy.2016.184 |
115 |
Lu X.-F. ; Liao P.-Q. ; Wang J.-W. ; Wu J.-X. ; Chen X.-W. ; He C.-T. ; Zhang J.-P. ; Li G.-R. ; Chen X.-M. J. Am. Chem. Soc. 2016, 138, 8336.
doi: 10.1021/jacs.6b03125 |
116 |
Cao C. ; Ma D. D. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Adv. Funct. Mater. 2019, 29, 1807418.
doi: 10.1002/adfm.201807418 |
117 |
Li X. ; Ma D. D. ; Cao C. ; Zou R. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Small 2019, 15, 1902218.
doi: 10.1002/smll.201902218 |
118 |
Zheng F. ; Zhang C. ; Gao X. ; Du C. ; Zhuang Z. ; Chen W. Electrochim. Acta 2019, 306, 627.
doi: 10.1016/j.electacta.2019.03.175 |
119 |
Liu J. ; Zhu D. ; Guo C. ; Vasileff A. ; Qiao S.-Z. Adv. Energy Mater. 2017, 7, 1700518.
doi: 10.1002/aenm.201700518 |
120 |
Zheng F. ; Zhang Z. ; Zhang C. ; Zhang C. ; Chen W. ACS Omega 2020, 5, 2495.
doi: 10.1021/acsomega.9b03295 |
121 |
Centi G. SmartMat 2020, e1005.
doi: 10.1002/smm2.1005 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[4] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[5] | Rong Hu, Liyun Wei, Jinglin Xian, Guangyu Fang, Zhiao Wu, Miao Fan, Jiayue Guo, Qingxiang Li, Kaisi Liu, Huiyu Jiang, Weilin Xu, Jun Wan, Yonggang Yao. Microwave Shock Process for Rapid Synthesis of 2D Porous La0.2Sr0.8CoO3 Perovskite as an Efficient Oxygen Evolution Reaction Catalyst [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212025-0. |
[6] | Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210039-0. |
[7] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[8] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[9] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[10] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[11] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[12] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[13] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[14] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[15] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
|