Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2010072.doi: 10.3866/PKU.WHXB202010072
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Jiashun Liang, Xuan Liu, Qing Li()
Received:
2020-10-29
Accepted:
2020-11-23
Published:
2020-11-30
Contact:
Qing Li
E-mail:qing_li@hust.edu.cn
Supported by:
Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2010072. doi: 10.3866/PKU.WHXB202010072
Table 1
Standard electrode potential of some metals (25.0 ℃, 101.325 kPa)."
No. | Electrode process | E0/V |
1 | Fe2+ + 2e- ═ Fe | -0.447 |
2 | Fe3+ + 3e- ═ Fe | -0.037 |
3 | Ni2+ + 2e- ═ Ni | -0.257 |
4 | Co2+ + 2e- ═ Co | -0.28 |
5 | Pt2+ + 2e- ═ Pt | 1.18 |
6 | [PtCl6]2- + 2e ═ [PtCl4]2- + 2Cl- | 0.68 |
7 | Pd2+ + 2e- ═ Pd | 0.915 |
8 | PdBr42- + 2e- ═ Pd + 4Br- | 0.6 |
9 | Au+ + e- ═ Au | 1.692 |
10 | Au3+ + 3e- ═ Au | 1.498 |
Fig 7
(a) ORR activity of Mo-Pt3Ni and Pt3Ni octahedrons before and after potential cycles 49; (b) elemental distribution of Mo, Ni and Pt obtained by kinetic Monte Carlo (KMC) simulations 50; (c) morphology evolution of Rh-PtNi and PtNi octahedrons; (d) ORR activity of Rh-PtNi and PtNi octahedrons before and after potential cycles 51. Adapted from the American Association for the Advancement of Science and American Chemical Society."
Fig 10
(a) STEM image of L10-PtCo/Pt, (b) fuel cell performance of L10-PtCo/Pt 76; (c) surface energy of different catalysts, (d) fuel cell performance of L10-W-PtCo 77; (e) schematic illustration of the preparation of L12-Pt3Co, (f) ORR polarization of L12-Pt3Co before and after potential cycling 78. Adapted from Elsevier, American Chemical Society and John Wiley and Sons."
Fig 11
(a) STEM image of PtNi nanowires (NWs) 1; (b, c) ORR activity of PtNiCo NWs before and after potential cycles 81; (d) ORR activity of Rh-Pt NWs before and after potential cycles, (e) vacancy formation energy of different catalysts 84. Adapted from the American Association for the Advancement of Science and American Chemical Society."
Fig 12
(a) A schematic of anodic and cathodic electrochemical processes occurring during SU/SD of PEMFCs 86; (b) XPS results of Pt/C and Pt/Ta:SnO2, (c) ORR polarization of Pt/Ta:SnO2 before and after high potential cycles 88; H2-air fuel cell polarization curves of Pt/C (d), and Pt/Mn-PANI-PPy-PGC (e) before and after high potential cycles 91. Adapted from Nature publishing group, American Chemical Society and Royal Chemical Society."
1 | Yang T. Y. ; Cui C. ; Rong H. P. ; Zhang J. T. ; Wang D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047. |
杨天怡; 崔铖; 戎宏盼; 张加涛; 王定胜. 物理化学学报, 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047 |
|
2 |
Gasteiger H. A. ; Markovic N. M. Science 2009, 324, 48.
doi: 10.1126/science.1172083 |
3 |
Debe M. K. Nature 2012, 486, 43.
doi: 10.1038/nature11115 |
4 |
Bashyam R. ; Zelenay P. Nature 2006, 443, 63.
doi: 10.1038/nature05118 |
5 | Kojima K. ; Fukazawa K. ECS Trans. 2015, 69, 213. |
6 |
Konno N. ; Mizuno S. ; Nakaji H. ; Ishikawa Y. SAE Int. J. Alt. Power 2015, 4, 123.
doi: 10.4271/2015-01-1175 |
7 | Yoshida T. ; Kojima K. Electrochem. Soc. Inter. 2015, 24, 45. |
8 |
Miao Z. P. ; Wang X. M. ; Tsai M. C. ; Jin Q. Q. ; Liang J. S. ; Ma F. ; Wang T. Y. ; Zheng S. J. ; Hwang B. J. ; Huang Y. H. ; et al Adv. Energy Mater. 2018, 8, 1801226.
doi: 10.1002/aenm.201801226 |
9 |
He D. S. ; He D. P. ; Wang J. ; Lin Y. ; Yin P. Q. ; Hong X. ; Wu Y. ; Li Y. D. J. Am. Chem. Soc. 2016, 138, 1494.
doi: 10.1021/jacs.5b12530 |
10 |
Liang J. ; Ma F. ; Hwang S. ; Wang X. ; Sokolowski J. ; Li Q. ; Wu G. ; Su D. Joule 2019, 3, 956.
doi: 10.1016/j.joule.2019.03.014 |
11 |
Li J. R. ; Xi Z. ; Pan Y. T. ; Spendelow J. S. ; Duchesne P. N. ; Su D. ; Li Q. ; Yu C. ; Yin Z. Y. ; Shen B. ; et al J. Am. Chem. Soc. 2018, 140, 2926.
doi: 10.1021/jacs.7b12829 |
12 | US Department of Energy, DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. https: //www.energy.gov/eere/fuelcells/doe-technicaltargets-polymer-electrolyte-membrane-fuelcell-components |
13 |
Stamenkovic V. ; Mun B. S. ; Mayrhofer K. J. J. ; Ross P. N. ; Markovic N. M. ; Rossmeisl J. ; Greeley J. ; Norskov J. K. Angew. Chem. Int. Ed. 2006, 45, 2897.
doi: 10.1002/anie.200504386 |
14 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. ; Ross P. N. ; Lucas C. A. ; Markovic N. M. Science 2007, 315, 493.
doi: 10.1126/science.1135941 |
15 |
Stamenkovic V. R. ; Mun B. S. ; Arenz M. ; Mayrhofer K. J. J. ; Lucas C. A. ; Wang G. F. ; Ross P. N. ; Markovic N. M. Nat. Mater. 2007, 6, 241.
doi: 10.1038/nmat1840 |
16 |
Greeley J. ; Stephens I. E. L. ; Bondarenko A. S. ; Johansson T. P. ; Hansen H. A. ; Jaramillo T. F. ; Rossmeisl J. ; Chorkendorff I. ; Norskov J. K. Nat. Chem. 2009, 1, 552.
doi: 10.1038/Nchem.367 |
17 |
Chen C. ; Kang Y. ; Huo Z. ; Zhu Z. ; Huang W. ; Xin H. L. ; Snyder J. D. ; Li D. ; Herron J. A. ; Mavrikakis M. ; et al Science 2014, 343, 1339.
doi: 10.1126/science.1249061 |
18 |
Becknell N. ; Kang Y. J. ; Chen C. ; Resasco J. ; Kornienko N. ; Guo J. H. ; Markovic N. M. ; Somorjai G. A. ; Stamenkovic V. R. ; Yang P. D. J. Am. Chem. Soc. 2015, 137, 15817.
doi: 10.1021/jacs.5b09639 |
19 | Luo M. C. ; Sun Y. J. ; Qin Y. N. ; Yang Y. ; Wu D. ; Guo S. J. Acta Phys. -Chim. Sin 2018, 34, 361. |
骆明川; 孙英俊; 秦英楠; 杨勇; 吴冬; 郭少军. 物理化学学报, 2018, 34, 361.
doi: 10.3866/PKU.WHXB201708312 |
|
20 |
Greeley J. ; Mavrikakis M. Nat. Mater. 2004, 3, 810.
doi: 10.1038/nmat1223 |
21 |
Nørskov J. K. ; Bligaard T. ; Logadottir A. ; Kitchin J. R. ; Chen J. G. ; Pandelov S. ; Stimming U. J. Electrochem. Soc. 2005, 152, J23.
doi: 10.1149/1.1856988 |
22 |
Strasser P. ; Koh S. ; Anniyev T. ; Greeley J. ; More K. ; Yu C. F. ; Liu Z. C. ; Kaya S. ; Nordlund D. ; Ogasawara H. ; et al Nat. Chem. 2010, 2, 454.
doi: 10.1038/Nchem.623 |
23 |
Luo M. C. ; Guo S. J. Nat. Rev. Mater. 2017, 2, 17059.
doi: 10.1038/natrevmats.2017.59 |
24 |
Liu M. L. ; Zhao Z. P. ; Duan X. F. ; Huang Y. Adv. Mater. 2019, 31, 1802234.
doi: 10.1002/adma.201802234 |
25 |
Chung D. Y. ; Yoo J. M. ; Sung Y. E. Adv. Mater. 2018, 30, 1704123.
doi: 10.1002/adma.201704123 |
26 |
Wang X. X. ; Swihart M. T. ; Wu G. Nat. Catal. 2019, 2, 578.
doi: 10.1038/s41929-019-0304-9 |
27 |
Borup R. ; Meyers J. ; Pivovar B. ; Kim Y. S. ; Mukundan R. ; Garland N. ; Myers D. ; Wilson M. ; Garzon F. ; Wood D. ; et al Chem. Rev. 2007, 107, 3904.
doi: 10.1021/cr050182l |
28 | Pourbaix M. NACE 1974, 307. |
29 |
Jinnouchi R. ; Toyoda E. ; Hatanaka T. ; Morimoto Y. J. Phys. Chem. C 2010, 114, 17557.
doi: 10.1021/jp106593d |
30 |
Tetteh E. B. ; Lee H. Y. ; Shin C. H. ; Kim S. H. ; Ham H. C. ; Tran T. N. ; Jang J. H. ; Yoo S. J. ; Yu J. S. ACS Energy Lett. 2020, 5, 1601.
doi: 10.1021/acsenergylett.0c00184 |
31 |
Yoo S. J. ; Hwang S. J. ; Lee J. G. ; Lee S. C. ; Lim T. H. ; Sung Y. E. ; Wieckowski A. ; Kim S. K. Energy Environ. Sci. 2012, 5, 7521.
doi: 10.1039/c2ee02691k |
32 |
Hwang S. J. ; Kim S. K. ; Lee J. G. ; Lee S. C. ; Jang J. H. ; Kim P. ; Lim T. H. ; Sung Y. E. ; Yoo S. J. J. Am. Chem. Soc. 2012, 134, 19508.
doi: 10.1021/ja307951y |
33 |
Tang H. L. ; Su Y. ; Zhang B. S. ; Lee A. F. ; Isaacs M. A. ; Wilson K. ; Li L. ; Ren Y. G. ; Huang J. H. ; Haruta M. ; et al Sci. Adv. 2017, 3, e1700231.
doi: 10.1126/sciadv.1700231 |
34 |
Zhang J. ; Wang H. ; Wang L. ; Ali S. ; Wang C. ; Wang L. ; Meng X. ; Li B. ; Su D. S. ; Xiao F. S. J. Am. Chem. Soc. 2019, 141, 2975.
doi: 10.1021/jacs.8b10864 |
35 |
Xiong Y. ; Yang Y. ; DiSalvo F. J. ; Abruña H. D. ACS Nano 2020, 14, 13069.
doi: 10.1021/acsnano.0c04559 |
36 |
Chong L. ; Wen J. G. ; Kubal J. ; Sen F. G. ; Zou J. X. ; Greeley J. ; Chan M. ; Barkholtz H. ; Ding W. J. ; Liu D. J. Science 2018, 362, 1276.
doi: 10.1126/science.aau0630 |
37 |
Ao X. ; Zhang W. ; Zhao B. T. ; Ding Y. ; Nam G. ; Soule L. ; Abdelhafiz A. ; Wang C. D. ; Liu M. L. Energy Environ. Sci. 2020, 13, 3032.
doi: 10.1039/d0ee00832j |
38 |
Greeley J. ; Norskov J. K. Electrochim. Acta 2007, 52, 5829.
doi: 10.1016/j.electacta.2007.02.082 |
39 |
Marcus R. A. J. Electroanal. Chem. 1997, 438, 251.
doi: 10.1016/S0022-0728(97)00091-0 |
40 | David A. ; Porter K. E. E. ; Mohamed S. Phase Transformations in Metals and Alloys 3rd ed London: Chapman & Hall, 2009. |
41 | Mullin J. W. ; Mohamed S. Crystallization 3rd ed Oxford: Oxford University Press, 1997. |
42 |
Vej-Hansen U. G. ; Rossmeisl J. ; Stephens I. E. L. ; Schiotz J. Phys. Chem. Chem. Phys. 2016, 18, 3302.
doi: 10.1039/c5cp04694g |
43 |
Liang J. S. ; Zhao Z. L. ; Li N. ; Wang X. M. ; Li S. Z. ; Liu X. ; Wang T. Y. ; Lu G. ; Wang D. L. ; Hwang B. J. ; et al Adv. Energy Mater. 2020, 10, 2000179.
doi: 10.1002/aenm.202000179 |
44 |
Zhang J. ; Yang H. Z. ; Fang J. Y. ; Zou S. Z. Nano Lett. 2010, 10, 638.
doi: 10.1021/nl903717z |
45 |
Choi S. I. ; Xie S. F. ; Shao M. H. ; Odell J. H. ; Lu N. ; Peng H. C. ; Protsailo L. ; Guerrero S. ; Park J. H. ; Xia X. H. ; et al Nano Lett. 2013, 13, 3420.
doi: 10.1021/nl401881z |
46 |
Cui C. H. ; Gan L. ; Li H. H. ; Yu S. H. ; Heggen M. ; Strasser P. Nano Lett. 2012, 12, 5885.
doi: 10.1021/nl3032795 |
47 |
Chan Q. W. ; Xu Y. ; Duan Z. Y. ; Xiao F. ; Fu F. ; Hong Y. M. ; Kim J. ; Choi S. I. ; Su D. ; Shao M. H. Nano Lett. 2017, 17, 3926.
doi: 10.1021/acs.nanolett.7b01510 |
48 |
Wu J. B. ; Gross A. ; Yang H. Nano Lett. 2011, 11, 798.
doi: 10.1021/nl104094p |
49 |
Huang X. Q. ; Zhao Z. P. ; Cao L. ; Chen Y. ; Zhu E. B. ; Lin Z. Y. ; Li M. F. ; Yan A. M. ; Zettl A. ; Wang Y. M. ; et al Science 2015, 348, 1230.
doi: 10.1126/science.aaa8765 |
50 |
Jia Q. Y. ; Zhao Z. P. ; Cao L. ; Li J. K. ; Ghoshal S. ; Davies V. ; Stavitski E. ; Attenkofer K. ; Liu Z. Y. ; Li M. F. ; et al Nano Lett. 2018, 18, 798.
doi: 10.1021/acs.nanolett.7b04007 |
51 |
Beermann V. ; Gocyla M. ; Willinger E. ; Rudi S. ; Heggen M. ; Dunin-Borkowski R. E. ; Willinger M. G. ; Strasser P. Nano Lett. 2016, 16, 1719.
doi: 10.1021/acs.nanolett.5b04636 |
52 |
Lim J. ; Shin H. ; Kim M. ; Lee H. ; Lee K. S. ; Kwon Y. ; Song D. ; Oh S. ; Kim H. ; Cho E. Nano Lett 2018, 18, 2450.
doi: 10.1021/acs.nanolett.8b00028 |
53 |
Zhang C. L. ; Sandorf W. ; Peng Z. M. ACS Catal. 2015, 5, 2296.
doi: 10.1021/cs502112g |
54 |
Li Y. J. ; Quan F. X. ; Chen L. ; Zhang W. J. ; Yu H. B. ; Chen C. F. RSC Adv. 2014, 4, 1895.
doi: 10.1039/c3ra46299d |
55 |
Zhang J. ; Sasaki K. ; Sutter E. ; Adzic R. R. Science 2007, 315, 220.
doi: 10.1126/science.1134569 |
56 |
Wu Z. F. ; Su Y. Q. ; Hensen E. J. M. ; Tian X. L. ; You C. H. ; Xu Q. J. Mater. Chem. A 2019, 7, 26402.
doi: 10.1039/c9ta08682j |
57 |
Lu B. A. ; Sheng T. ; Tian N. ; Zhang Z. C. ; Xiao C. ; Cao Z. M. ; Ma H. B. ; Zhou Z. Y. ; Sun S. G. Nano Energy 2017, 33, 65.
doi: 10.1016/j.nanoen.2017.01.003 |
58 |
Kuttiyiel K. A. ; Kattel S. ; Cheng S. B. ; Lee J. H. ; Wu L. J. ; Zhu Y. M. ; Park G. G. ; Liu P. ; Sasaki K. ; Chen J. G. G. ; et al ACS Appl. Energy Mater. 2018, 1, 3771.
doi: 10.1021/acsaem.8b00555 |
59 |
Sun S. H. ; Murray C. B. ; Weller D. ; Folks L. ; Moser A. Science 2000, 287, 1989.
doi: 10.1126/science.287.5460.1989 |
60 |
Chen M. ; Kim J. ; Liu J. P. ; Fan H. Y. ; Sun S. H. J. Am. Chem. Soc. 2006, 128, 7132.
doi: 10.1021/ja061704x |
61 |
Kim J. ; Rong C. B. ; Lee Y. ; Liu J. P. ; Sun S. H. Chem. Mater. 2008, 20, 7242.
doi: 10.1021/cm8024878 |
62 |
Zhang L. ; Roling L. T. ; Wang X. ; Vara M. ; Chi M. ; Liu J. ; Choi S. I. ; Park J. ; Herron J. A. ; Xie Z. ; et al Science 2015, 349, 412.
doi: 10.1126/science.aab0801 |
63 |
Qi Z. Y. ; Xiao C. X. ; Liu C. ; Goh T. W. ; Zhou L. ; Maligal-Ganesh R. ; Pei Y. C. ; Li X. L. ; Curtiss L. A. ; Huang W. Y. J. Am. Chem. Soc. 2017, 139, 4762.
doi: 10.1021/jacs.6b12780 |
64 |
Kim J. M. ; Rong C. B. ; Liu J. P. ; Sun S. H. Adv. Mater. 2009, 21, 906.
doi: 10.1002/adma.200801620 |
65 |
Kang S. S. ; Miao G. X. ; Shi S. ; Jia Z. ; Nikles D. E. ; Harrell J. W. J. Am. Chem. Soc. 2006, 128, 1042.
doi: 10.1021/ja057343n |
66 |
Yi D. K. ; Selvan S. T. ; Lee S. S. ; Papaefthymiou G. C. ; Kundaliya D. ; Ying J. Y. J. Am. Chem. Soc. 2005, 127, 4990.
doi: 10.1021/ja0428863 |
67 |
Lee D. C. ; Mikulec F. V. ; Pelaez J. M. ; Koo B. ; Korgel B. A. J. Phys. Chem. B 2006, 110, 11160.
doi: 10.1021/jp060974z |
68 |
Wang T. ; Liang J. ; Zhao Z. ; Li S. ; Lu G. ; Xia Z. ; Wang C. ; Luo J. ; Han J. ; Ma C. ; et al Adv. Energy Mater. 2019, 9, 1803771.
doi: 10.1002/aenm.201803771 |
69 |
Chung D. Y. ; Jun S. W. ; Yoon G. ; Kwon S. G. ; Shin D. Y. ; Seo P. ; Yoo J. M. ; Shin H. ; Chung Y. H. ; Kim H. ; et al J. Am. Chem. Soc. 2015, 137, 15478.
doi: 10.1021/jacs.5b09653 |
70 |
Du X. X. ; He Y. ; Wang X. X. ; Wang J. N. Energy Environ. Sci. 2016, 9, 2623.
doi: 10.1039/C6EE01204C |
71 |
Jung C. ; Lee C. ; Bang K. ; Lim J. ; Lee H. ; Ryu H. J. ; Cho E. ; Lee H. M. ACS Appl. Mater. Inter. 2017, 9, 31806.
doi: 10.1021/acsami.7b07648 |
72 |
Chen H. ; Wang D. ; Yu Y. ; Newton K. A. ; Muller D. A. ; Abruna H. ; DiSalvo F. J. J. Am. Chem. Soc. 2012, 134, 18453.
doi: 10.1021/ja308674b |
73 |
Dong A. G. ; Chen J. ; Ye X. C. ; Kikkawa J. M. ; Murray C. B. J. Am. Chem. Soc. 2011, 133, 13296.
doi: 10.1021/ja2057314 |
74 |
Zhang S. ; Zhang X. ; Jiang G. M. ; Zhu H. Y. ; Guo S. J. ; Su D. ; Lu G. ; Sun S. H. J. Am. Chem. Soc. 2014, 136, 7734.
doi: 10.1021/ja5030172 |
75 |
Wang D. L. ; Xin H. L. L. ; Hovden R. ; Wang H. S. ; Yu Y. C. ; Muller D. A. ; DiSalvo F. J. ; Abruna H. D. Nat. Mater. 2013, 12, 81.
doi: 10.1038/Nmat3458 |
76 |
Li J. ; Sharma S. ; Liu X. ; Pan Y. T. ; Spendelow J. S. ; Chi M. ; Jia Y. ; Zhang P. ; Cullen D. A. ; Xi Z. ; et al Joule 2019, 3, 124.
doi: 10.1016/j.joule.2018.09.016 |
77 |
Liang J. S. ; Li N. ; Zhao Z. L. ; Ma L. ; Wang X. M. ; Li S. Z. ; Liu X. ; Wang T. Y. ; Du Y. P. ; Lu G. ; et al Angew. Chem. Int. Ed. 2019, 58, 15471.
doi: 10.1002/anie.201908824 |
78 |
Wang X. X. ; Hwang S. ; Pan Y. T. ; Chen K. ; He Y. ; Karakalos S. ; Zhang H. ; Spendelow J. S. ; Su D. ; Wu G. Nano Lett. 2018, 18, 4163.
doi: 10.1021/acs.nanolett.8b00978 |
79 |
Gimenez-Lopez M. D. ; Kurtoglu A. ; Walsh D. A. ; Khlobystov A. N. Adv. Mater. 2016, 28, 9103.
doi: 10.1002/adma.201602485 |
80 |
Cheng N. C. ; Banis M. N. ; Liu J. ; Riese A. ; Li X. ; Li R. Y. ; Ye S. Y. ; Knights S. ; Sun X. L. Adv. Mater. 2015, 27, 277.
doi: 10.1002/adma.201404314 |
81 |
Jiang K. Z. ; Zhao D. D. ; Guo S. J. ; Zhang X. ; Zhu X. ; Guo J. ; Lu G. ; Huang X. Q. Sci. Adv. 2017, 3, e1601705.
doi: 10.1126/sciadv.1601705 |
82 |
Gao F. ; Zhang Y. P. ; Song P. P. ; Wang J. ; Yan B. ; Sun Q. W. ; Li L. ; Zhu X. ; Du Y. K. Nanoscale 2019, 11, 4831.
doi: 10.1039/c8nr09892a |
83 |
Song P. P. ; Xu H. ; Wang J. ; Zhang Y. P. ; Gao F. ; Guo J. ; Shiraishi Y. ; Du Y. K. Nanoscale 2018, 10, 16468.
doi: 10.1039/c8nr04918a |
84 |
Huang H. W. ; Li K. ; Chen Z. ; Luo L. H. ; Gu Y. Q. ; Zhang D. Y. ; Ma C. ; Si R. ; Yang J. L. ; Peng Z. M. ; et al J. Am. Chem. Soc. 2017, 139, 8152.
doi: 10.1021/jacs.7b01036 |
85 |
Li K. ; Li X. X. ; Huang H. W. ; Luo L. H. ; Li X. ; Yan X. P. ; Ma C. ; Si R. ; Yang J. L. ; Zeng J. J. Am. Chem. Soc. 2018, 140, 16159.
doi: 10.1021/jacs.8b08836 |
86 |
Jung S. M. ; Yun S. W. ; Kim J. H. ; You S. H. ; Park J. ; Lee S. ; Chang S. H. ; Chae S. C. ; Joo S. H. ; Jung Y. ; et al Nat. Catal. 2020, 3, 681.
doi: 10.1038/s41929-020-00501-0 |
87 |
Liu Y. ; Mustain W. E. J. Am. Chem. Soc. 2013, 135, 530.
doi: 10.1021/ja307635r |
88 |
Jimenez-Morales I. ; Haidar F. ; Cavaliere S. ; Jones D. ; Roziere J. ACS Catal. 2020, 10, 10399.
doi: 10.1021/acscatal.0c02220 |
89 |
He C. ; Sankarasubramanian S. ; Matanovic I. ; Atanassov P. ; Ramani V. ChemSusChem 2019, 12, 3468.
doi: 10.1002/cssc.201900499 |
90 |
Park C. ; Lee E. ; Lee G. ; Tak Y. Appl. Catal. B-Environ. 2020, 268, 118414.
doi: 10.1016/j.apcatb.2019.118414 |
91 |
Qiao Z. ; Hwang S. ; Li X. ; Wang C. Y. ; Samarakoon W. ; Karakalos S. ; Li D. G. ; Chen M. J. ; He Y. H. ; Wang M. Y. ; et al Energy Environ. Sci. 2019, 12, 2830.
doi: 10.1039/c9ee01899a |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[4] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[5] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[6] | Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210039-0. |
[7] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[8] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[9] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[10] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[11] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[12] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[13] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[14] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[15] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
|