Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2011050.doi: 10.3866/PKU.WHXB202011050
Special Issue: Graphene: Functions and Applications
• ARTICLE • Previous Articles Next Articles
Xiaoxiong Huang1,2, Yingjie Ma1,*(), Linjie Zhi1,2,*()
Received:
2020-11-19
Accepted:
2020-12-13
Published:
2020-12-18
Contact:
Yingjie Ma,Linjie Zhi
E-mail:mayj@nanoctr.cn;zhilj@nanoctr.cn
About author:
Email: zhilj@nanoctr.cn (L.Z.)Supported by:
Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction[J]. Acta Phys. -Chim. Sin. 2022, 38(2), 2011050. doi: 10.3866/PKU.WHXB202011050
1 |
Qiao J. ; Liu Y. ; Hong F. ; Zhang J Chem. Soc. Rev. 2014, 45, 631.
doi: 10.1002/chin.201417263 |
2 | Bai X. F. ; Chen W. ; Wang B. Y. ; Feng G. H. ; Wei W. ; Jiao Z. ; Sun Y. H Acta Phys. -Chim. Sin. 2017, 33, 2388. |
白晓芳; 陈为; 王白银; 冯光辉; 魏伟; 焦正; 孙予罕; 物理化学学报, 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131 |
|
3 |
Zheng T. ; Jiang K. ; Wang H Adv. Mater. 2018, 30, 1802066.
doi: 10.1002/adma.201802066 |
4 |
Tran-Phu T. ; Daiyan R. ; Fusco Z. ; Ma Z. ; Amal R. ; Tricoli A Adv. Funct. Mater. 2020, 30, 1906478.
doi: 10.1002/adfm.201906478 |
5 |
Li F. ; Thevenon A. ; Rosas-Hernández A. ; Wang Z. ; Li Y. ; Gabardo C. M. ; Ozden A. ; Dinh C. T. ; Li J. ; Wang Y. ; et al Nature 2020, 577, 509.
doi: 10.1038/s41586-019-1782-2 |
6 |
Morales-Guio C. G. ; Cave E. R. ; Nitopi S. A. ; Feaster J. T. ; Wang L. ; Kuhl K. P. ; Jackson A. ; Johnson N. C. ; Abram D. N. ; Hatsukade T. ; et al Nat. Catal. 2018, 1, 764.
doi: 10.1038/s41929-018-0139-9 |
7 |
Tee S. Y. ; Win K. Y. ; Teo W. S. ; Koh L. D. ; Liu S. ; Teng C. P. ; Han M. Y Adv. Sci. 2017, 4, 1600337.
doi: 10.1002/advs.201600337 |
8 |
Hoffert M. I. ; Caldeira K. ; Benford G. ; Criswell D. R. ; Green C. ; Herzog H. ; Jain A. K. ; Kheshgi H. S. ; Lackner K. S. ; Lewis J. S. ; et al Science 2002, 298, 981.
doi: 10.1126/science.1072357 |
9 |
Zhang Y.-J. ; Sethuraman V. ; Michalsky R. ; Peterson A. A ACS Catal. 2014, 4, 3742.
doi: 10.1021/cs5012298 |
10 |
Zhang W. ; Hu Y. ; Ma L. ; Zhu G. ; Wang Y. ; Xue X. ; Chen R. ; Yang S. ; Jin Z Adv. Sci. 2018, 5, 1700275.
doi: 10.1002/advs.201700275 |
11 |
Chang X. ; Wang T. ; Zhao Z. J. ; Yang P. ; Greeley J. ; Mu R. ; Zhang G. ; Gong Z. ; Luo Z. ; Chen J. ; et al Angew. Chem. Int. Ed. 2018, 57, 15415.
doi: 10.1002/anie.201805256 |
12 |
Zhu W. ; Michalsky R. ; Metin O. N. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S J. Am. Chem. Soc. 2013, 135, 16833.
doi: 10.1021/ja409445p |
13 |
Liu S. B. ; Tao H. B. ; Zeng L. ; Liu Q. ; Xu Z. H. ; Liu Q. X. ; Luo J.-L. Am. Chem. Soc. 2017, 139, 2160.
doi: 10.1021/jacs.6b12103 |
14 |
Liu S. ; Xiao J. ; Lu X. F. ; Wang J. ; Wang X. ; Lou X. W Angew. Chem. Int. Ed. 2019, 58, 8499.
doi: 10.1002/anie.201903613 |
15 |
García J. ; Jiménez C. ; Martínez F. ; Camarillo R. ; Rincón J J. Catal. 2018, 367, 72.
doi: 10.1016/j.jcat.2018.08.017 |
16 | Jin H. D. ; Xiong L. K. ; Zhang X. ; Lian Y. B. ; Chen S. ; Lu Y. T. ; Deng Z. ; Peng Y Acta Phys. -Chim. Sin. 2021, 37, 2006017. |
金惠东; 熊力堃; 张想; 连跃彬; 陈思; 陆永涛; 邓昭; 彭扬; 物理化学学报, 2021, 37, 2006017.
doi: 10.3866/PKU.WHXB202006017 |
|
17 |
Jiang K. ; Sandberg R. B. ; Akey A. J. ; Liu X. ; Bell D. C. ; Nørskov J. K. ; Chan K. ; Wang H Nat. Catal. 2018, 1, 111.
doi: 10.1038/s41929-017-0009-x |
18 |
Lee S. ; Park G. ; Lee J ACS Catal. 2017, 7, 8594.
doi: 10.1021/acscatal.7b02822 |
19 |
Bushuyev O. S. ; De Luna P. ; Dinh C. T. ; Tao L. ; Saur G. ; van de Lagemaat J. ; Kelley S. O. ; Sargent E. H Joule 2018, 2, 825.
doi: 10.1016/j.joule.2017.09.003 |
20 |
Ye R. P. ; Ding J. ; Gong W. ; Argyle M. D. ; Yao Y. G Nat. Commun. 2019, 10, 5698.
doi: 10.1038/s41467-019-13638-9 |
21 |
Zhou W. ; Cheng K. ; Kang J. C. ; Zhou C. ; Subramanian V. ; Zhang Q. H. ; Wang Y Chem. Soc. Rev. 2019, 48
doi: 10.1039/C8CS00502H |
22 |
Yang X.-F. ; Wang A. Q. ; Qiao B. T. ; Li J. ; Liu J. Y Acc. Chem. Res. 2013, 46, 1740.
doi: 10.1021/ar300361m |
23 |
Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T Nat. Chem. 2011, 3, 634.
doi: 10.1038/nchem.1095 |
24 |
Ju W. ; Bagger A. ; Hao G.-P. ; Varela A. S. ; Sinev I. ; Bon V. ; Cuenya B. R. ; Kaskel S. ; Rossmeisl J. ; Strasser P Nat. Commun. 2017, 8, 944.
doi: 10.1038/s41467-017-01035-z |
25 |
Jiao L. ; Yang W. J. ; Wan G. ; Zhang R. ; Zheng X. S. ; Zhou H. ; Yu S. H. ; Jiang H. L Angew. Chem. Int. Ed. 2020, 59, 2.
doi: 10.1002/anie.202008787 |
26 |
Zhang X. ; Wu Z. ; Zhang X. ; Li L. ; Li Y. ; Xu H. ; Li X. ; Yu X. ; Zhang Z. ; Liang Y. ; et al Nat. Commun. 2017, 8, 14675.
doi: 10.1038/ncomms14675 |
27 |
Lin L. ; Li H. B. ; Yan C. C. ; Li H. F. ; Si R. ; Li M. R. ; Xiao J. P. ; Wang G. X. ; Bao X. H Adv. Mater. 2019, 31, 1903470.
doi: 10.1002/adma.201903470 |
28 |
Gu J. ; Hsu C. S. ; Bai L. ; Chen H. M. ; Hu X Science 2019, 364, 1091.
doi: 10.1126/science.aaw7515 |
29 |
Zhang H. ; Li J. ; Xi S. ; Du Y. ; Wang J Angew. Chem. Int. Ed. 2019, 131, 42.
doi: 10.1002/ange.201906079 |
30 |
Zhang X. ; Wang Y. ; Gu M. ; Wang M. ; Zhang Z. S. ; Pan W. Y. ; Jiang Z. ; Zheng H. Z. ; Lucero M. ; Wang H. L. ; et al Nat. Energy 2020, 5, 684.
doi: 10.1038/s41560-020-0667-9 |
31 |
Yang H. B. ; Hung S.-F. ; Liu S. ; Yuan K. D. ; Miao S. ; Zhang L. P. ; Huang X. ; Wang H.-Y. ; Cai W. Z. ; Chen R. ; et al Nat. Energy 2018, 3, 140.
doi: 10.1038/s41560-017-0078-8 |
32 |
Yan Y. ; Gu P. ; Zheng S. S. ; Zheng M. B. ; Pang H. ; Xue H. G J. Mater. Chem. A 2016, 4, 19078.
doi: 10.1039/c6ta08331e |
33 |
Li F. ; Han G.-F. ; Noh H.-J. ; Kim S.-J. ; Lu Y. L. ; Jeong H. Y. ; Fu Z. P. ; Baek J.-B. Energy Environ. Sci. 2018, 11, 2263.
doi: 10.1039/C8EE01169A |
34 |
Miao X. ; Qu D. ; Yang D. ; Nie B. ; Zhao Y. ; Fan H. ; Su Z Adv. Mater. 2018, 30, 1704740.
doi: 10.1002/adma.201704740 |
35 |
Zhao Y. ; Liang J. ; Wang C. ; Ma J. ; Wallace G. G Adv. Energy Mater. 2018, 8, 17025241.
doi: 10.1002/aenm.201702524 |
36 |
Wen C. F. ; Mao F. X. ; Liu Y. W. ; Zhang X. Y. ; Fu H. Q. ; Zheng L. R. ; Liu P. F. ; Yang H. G ACS Catal. 2020, 10, 1086.
doi: 10.1021/acscatal.9b02978 |
37 |
He S. ; Ji D. ; Zhang J. ; Novello P. ; Liu J J. Phys. Chem. B 2020, 3, 511.
doi: 10.1021/acs.jpcb.9b09730 |
38 |
Lu C. ; Yang J. ; Wei S. ; Bi S. ; Xia Y. ; Chen M. ; Hou Y. ; Qiu M. ; Yuan C. ; Su Y. ; et al Adv. Funct. Mater. 2019, 29, 1806884.
doi: 10.1002/adfm.201806884 |
39 |
Sa Y. J. ; Jung H. ; Shin D. ; Jeong H. Y. ; Ringe S. ; Kim H. ; Hwang Y. J. ; Joo S. H ACS Catal. 2020, 10, 10920.
doi: 10.1021/acscatal.0c02325 |
40 |
Gabardo C. M. ; Seifitokaldani A. ; Edwards J. P. ; Dinh C. T. ; Burdyny T. ; Kibria M. G. ; O'Brien C. P. ; Sargent E. H. ; Sinton D Energy Environ. Sci. 2018, 11, 2531.
doi: 10.1039/C8EE01684D |
41 |
Gao F.-Y. ; Bao R.-C. ; Gao M.-R. ; Yu S -H. J. Mater. Chem. A 2020, 8, 15458.
doi: 10.1039/D0TA03525D |
42 |
Seifitokaldani A. ; Gabardo C. M. ; Burdyny T. ; Dinh C. T. ; Edwards J. P. ; Kibria M. G. ; Bushuyev O. S. ; Kelley S. O. ; Sinton D. ; Sargent E. H J. Am. Chem. Soc. 2018, 140, 3833.
doi: 10.1021/jacs.7b13542 |
[1] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[2] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[3] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[4] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[5] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[6] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[7] | Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2210003-. |
[8] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[9] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[10] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[11] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[12] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[13] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[14] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[15] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
|