Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (11): 2201039.doi: 10.3866/PKU.WHXB202201039
Special Issue: Special Issue of Emerging Scientists
• ARTICLE • Previous Articles Next Articles
Xiaoyun Xu1, Hongbo Wu1, Shijie Liang2, Zheng Tang1,*(), Mengyang Li1, Jing Wang1, Xiang Wang1, Jin Wen1, Erjun Zhou3,*(
), Weiwei Li2,*(
), Zaifei Ma1,*(
)
Received:
2022-01-23
Accepted:
2022-02-16
Published:
2022-02-22
Contact:
Zheng Tang,Erjun Zhou,Weiwei Li,Zaifei Ma
E-mail:ztang@dhu.edu.cn;zhouej@nanoctr.cn;liweiwei@iccas.ac.cn;mazaifei@dhu.edu.cn
About author:
Email: mazaifei@dhu.edu.cn (Z.M.)Supported by:
Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2201039. doi: 10.3866/PKU.WHXB202201039
"
Active Layer | Voc/V | ECT/eV | J0, rad/(mA?cm?2) | Voc, rad/V | ?Vnr/V | ?Vr/V | Vloss/V | λ/eV | Jsc/(mA?cm?2) | PCE/% |
P3HT: PC61BM | 0.61 | 1.18 | 9.95E-17 | 0.97 | 0.37 | 0.20 | 0.57 | 0.23 | 8.93 | 3.59 |
P3HT: Y6 | 0.38 | 1.17 | 4.17E-16 | 0.94 | 0.56 | 0.23 | 0.79 | 0.26 | 10.77 | 1.70 |
P3HT: IT4F | 0.39 | 1.15 | 6.52E-17 | 0.93 | 0.54 | 0.22 | 0.76 | 0.19 | 1.14 | 0.18 |
P3HT: ZY-4Cl | 0.85 | 1.41 | 4.68E-20 | 1.18 | 0.33 | 0.23 | 0.56 | 0.24 | 14.78 | 7.02 |
1 |
YuG.;GaoJ.;HummelenJ. C.;WudlF.;HeegerA. J.Science1995,270(5243),1789.
doi: 10.1126/science.270.5243.1789 |
2 |
SøndergaardR.;HöselM.;AngmoD.;Larsen-OlsenT. T.;KrebsF. C.Mater. Today2012,15(1),36.
doi: 10.1016/S1369-7021(12)70019-6 |
3 |
KrebsF. C.Sol. Energy Mater. Sol. Cells2009,93(4),394.
doi: 10.1016/j.solmat.2008.10.004 |
4 |
YangM.;WeiW.;ZhouX.;WangZ.;DuanC.Energy Mater.2021,1(1),100008.
doi: 10.20517/energymater.2021.08 |
5 |
DuanC.;DingL.Sci. Bull.2020,65(15),1231.
doi: 10.1016/j.scib.2020.04.030 |
6 |
LiC.;ZhouJ.;SongJ.;XuJ.;ZhangH.;ZhangX.;GuoJ.;ZhuL.;WeiD.;HanG.;et alNat. Energy2021,6(6),605.
doi: 10.1038/s41560-021-00820-x |
7 |
SongJ.;ZhuL.;LiC.;XuJ.;WuH.;ZhangX.;ZhangY.;TangZ.;LiuF.;SunY.Matter2021,4(7),2542.
doi: 10.1016/j.matt.2021.06.010 |
8 |
LiuY.;LiB.;MaC.-Q.;HuangF.;FengG.;ChenH.;HouJ.;YanL.;WeiQ.;LuoQ.;et alSci. Chin. Chem.2021,64(1),1869.
doi: 10.1007/s11426-021-1180-6 |
9 |
ZhaoW.;LiS.;YaoH.;ZhangS.;ZhangY.;YangB.;HouJ.J. Am. Chem. Soc.2017,139(21),7148.
doi: 10.1021/jacs.7b02677 |
10 |
LiS.;YeL.;ZhaoW.;ZhangS.;MukherjeeS.;AdeH.;HouJ.Adv. Mater.2016,28(42),9423.
doi: 10.1002/adma.201602776 |
11 |
ZhangM.;XuX.;YuL.;PengQ.J. Power Sources2021,499,229961.
doi: 10.1016/j.jpowsour.2021.229961 |
12 |
HuoY.;GongX.-T.;LauT.-K.;XiaoT.;YanC.;LuX.;LuG.;ZhanX.;ZhangH.-L.Chem. Mater.2018,30(23),8661.
doi: 10.1021/acs.chemmater.8b03980 |
13 |
ZhaoW.;QianD.;ZhangS.;LiS.;InganäsO.;GaoF.;HouJ.Adv. Mater.2016,28(23),4734.
doi: 10.1002/adma.201600281 |
14 |
ZhengZ.;YaoH.;YeL.;XuY.;ZhangS.;HouJ.Mater. Today2020,35(1),115.
doi: 10.1016/j.mattod.2019.10.023 |
15 |
PoR.;BianchiG.;CarboneraC.;PellegrinoA.Macromolecules2015,48(3),453.
doi: 10.1021/ma501894w |
16 |
LiX.;PanF.;SunC.;ZhangM.;WangZ.;DuJ.;WangJ.;XiaoM.;XueL.;ZhangZ.-G.;et alNat. Commun.2019,10(1),519.
doi: 10.1038/s41467-019-08508-3 |
17 |
YuanX.;ZhaoY.;ZhanT.;OhJ.;ZhouJ.;LiJ.;WangX.;WangZ.;PangS.;CaiP.;et alEnergy Environ. Sci.2021,14(10),5530.
doi: 10.1039/D1EE01957K |
18 |
PangS.;WangZ.;YuanX.;PanL.;DengW.;TangH.;WuH.;ChenS.;DuanC.;HuangF.;et alAngew. Chem. Int. Ed2021,60(16),8813.
doi: 10.1002/anie.202016265 |
19 |
JiaX.;LiuG.;ChenS.;LiZ.;WangZ.;YinQ.;YipH.-L.;YangC.;DuanC.;HuangF.;et alACS Appl. Energy Mater.2019,2(10),7572.
doi: 10.1021/acsaem.9b01532 |
20 |
JiaX.;ChenZ.;DuanC.;WangZ.;YinQ.;HuangF.;CaoY.J. Mater. Chem. C2019,7(2),314.
doi: 10.1039/C8TC04746D |
21 |
PoR.;BernardiA.;CalabreseA.;CarboneraC.;CorsoG.;PellegrinoA.Energy Environ. Sci.2014,7(3),925.
doi: 10.1039/C3EE43460E |
22 |
WadsworthA.;HamidZ.;BidwellM.;AshrafR. S.;KhanJ. I.;AnjumD. H.;CendraC.;YanJ.;RezasoltaniE.;GuilbertA. A. Y.;et alAdv. Energy Mater.2018,8(28),1801001.
doi: 10.1002/aenm.201801001 |
23 |
XuX.;ZhangG.;YuL.;LiR.;PengQ.Adv. Mater.2019,31(52),1906045.
doi: 10.1002/adma.201906045 |
24 |
VincentP.;ShinS.-C.;GooJ. S.;YouY.-J.;ChoB.;LeeS.;LeeD.-W.;KwonS. R.;ChungK.-B.;LeeJ.-J.;et alDyes. Pigm.2018,159,306.
doi: 10.1016/j.dyepig.2018.06.025 |
25 |
AnsariM. A.;MohiuddinS.;KandemirliF.;MalikM. I.RSC Adv.2018,8(15),8319.
doi: 10.1039/C8RA00555A |
26 |
XiaoB.;TangA.;YangJ.;WeiZ.;ZhouE.ACS Macro Lett.2017,6(4),410.
doi: 10.1021/acsmacrolett.7b00097 |
27 |
HeY.;ChenH.-Y.;HouJ.;LiY.J. Am. Chem. Soc.2010,132(4),1377.
doi: 10.1021/ja908602j |
28 |
VeldmanD.;MeskersS. C. J.;JanssenR. A. J.Adv. Funct. Mater.2009,19(12),1939.
doi: 10.1002/adfm.200900090 |
29 |
ZakhidovE.;ImomovM.;QuvondikovV.;NematovS.;TajibaevI.;SaparbaevA.;IsmailI.;ShahidB.;YangR.Appl. Phys. A2019,125(11),803.
doi: 10.1007/s00339-019-3100-0 |
30 |
QinY.;UddinM. A.;ChenY.;JangB.;ZhaoK.;ZhengZ.;YuR.;ShinT. J.;WooH. Y.;HouJ.Adv. Mater.2016,28(42),9416.
doi: 10.1002/adma.201601803 |
31 |
YangC.;ZhangS.;RenJ.;GaoM.;BiP.;YeL.;HouJ.Energy Environ. Sci.2020,13(9),2864.
doi: 10.1039/D0EE01763A |
32 |
EisnerF.;FootG.;YanJ.;AzzouziM.;GeorgiadouD. G.;SitW. Y.;FirdausY.;ZhangG.;LinY.-H.;YipH.-L.;et alAdv. Mater.2021,5,2104654.
doi: 10.1002/adma.202104654 |
33 |
BaranD.;AshrafR. S.;HanifiD. A.;AbdelsamieM.;GaspariniN.;RöhrJ.A.;HollidayS.;WadsworthA.;LockettS.;NeophytouM.;et alNat. Mater.2017,16(3),363.
doi: 10.1038/nmat4797 |
34 |
LiuQ.;JiangY.;JinK.;QinJ.;XuJ.;LiW.;XiongJ.;LiuJ.;XiaoZ.;SunK.;et alSci. Bull.2020,65(4),272.
doi: 10.1016/j.scib.2020.01.001 |
35 |
KammV.;BattagliarinG.;HowardI. A.;PisulaW.;MavrinskiyA.;LiC.;MüllenK.;LaquaiF.Adv. Energy Mater.2011,1(2),297.
doi: 10.1002/aenm.201000006 |
36 |
ZalarP.;KuikM.;RanN. A.;LoveJ. A.;NguyenT.-Q.Adv. Energy Mater.2014,4(14),1400438.
doi: 10.1002/aenm.201400438 |
37 |
VandewalK.;TvingstedtK.;GadisaA.;InganäsO.;MancaJ. V.Phys. Rev. B2010,81(12),125204.
doi: 10.1103/PhysRevB.81.125204 |
38 |
VandewalK.;BenduhnJ.;NikolisV. C.Sustain. Energy Fuels2018,2(3),538.
doi: 10.1039/C7SE00601B |
39 |
YuanJ.;ZhangY.;ZhouL.;ZhangG.;YipH.-L.;LauT.-K.;LuX.;ZhuC.;PengH.;JohnsonP. A.;et alJoule2019,3(4),1140.
doi: 10.1016/j.joule.2019.01.004 |
40 |
PanM.-A.;LauT.-K.;TangY.;WuY.-C.;LiuT.;LiK.;ChenM.-C.;LuX.;MaW.;ZhanC.J. Mater. Chem. A2019,7(36),20713.
doi: 10.1039/C9TA06929A |
41 |
MaW.;YangC.;GongX.;LeeK.;HeegerA. J.Adv. Funct. Mater.2005,15(10),1617.
doi: 10.1002/adfm.200500211 |
42 |
PetterssonL. A. A.;RomanL. S.;InganäsO.J. Appl. Phys.1999,86(1),487.
doi: 10.1063/1.370757 |
43 |
BurkhardG. F.;HokeE. T.;ScullyS. R.;McGeheeM. D.Nano Lett.2009,9(12),4037.
doi: 10.1021/nl902205n |
44 |
GhosekarI. C.;PatilG. C.Semicond. Sci. Technol.2021,36(4),045005.
doi: 10.1088/1361-6641/abe21b |
45 |
LenesM.;MoranaM.;BrabecC. J.;BlomP. W. M.Adv. Funct. Mater.2009,19(7),1106.
doi: 10.1002/adfm.200801514 |
46 |
WangY.;QianD.;CuiY.;ZhangH.;HouJ.;VandewalK.;KirchartzT.;GaoF.Adv. Energy Mater.2018,8(28),1801352.
doi: 10.1002/aenm.201801352 |
47 |
VandewalK.Annu. Rev. Phys. Chem.2016,67(1),113.
doi: 10.1146/annurev-physchem-040215-112144 |
48 |
LiuH.;LiM.;WuH.;WangJ.;MaZ.;TangZ.J. Mater. Chem. A2021,9(35),19770.
doi: 10.1039/D1TA00576F |
49 |
CoropceanuV.;ChenX.-K.;WangT.;ZhengZ.;BrédasJ.-L.Nat. Rev. Mater.2019,4(11),689.
doi: 10.1038/s41578-019-0137-9 |
50 |
MarcusR. A.;SutinN.Biophys. Acta Bioenergy1985,811(3),265.
doi: 10.1016/0304-4173(85)90014-X |
51 |
ClossG. L.;MillerJ. R.Science1988,240(4851),440.
doi: 10.1126/science.240.4851.440 |
52 |
OeveringH.;VerhoevenJ. W.;Paddon-RowM. N.;WarmanJ. M.Tetrahedron1989,45(15),4751.
doi: 10.1016/S0040-4020(01)85150-4 |
53 |
OliverA. M.;Paddon-RowM. N.;KroonJ.;VerhoevenJ. W.Chem. Phys. Lett.1992,191(3),371.
doi: 10.1016/0009-2614(92)85316-3 |
54 |
WangJ.;JiangX.;WuH.;FengG.;WuH.;LiJ.;YiY.;FengX.;MaZ.;LiW.;et alNat. Commun.2021,12(1),6679.
doi: 10.1038/s41467-021-26995-1 |
55 |
YangC.;YuR.;LiuC.;LiH.;ZhangS.;HouJ.ChemSusChem2021,14(1),3607.
doi: 10.1002/cssc.202100627 |
56 |
YuZ.-P.;LiX.;HeC.;WangD.;QinR.;ZhouG.;LiuZ.-X.;AndersenT.R.;ZhuH.;ChenH.;et alChin. Chem. Lett.2020,31(7),1991.
doi: 10.1016/j.cclet.2019.12.003 |
[1] | Qiuju Liang, Yinxia Chang, Chaowei Liang, Haolei Zhu, Zibin Guo, Jiangang Liu. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells based on Nonfullerene Blends [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212006-0. |
[2] | Baiqiao Liu, Yunhua Xu, Dongdong Xia, Chengyi Xiao, Zhaofan Yang, Weiwei Li. Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2009056-. |
[3] | Meiqi ZHANG, Yunlong MA, Qingdong ZHENG. Bandgap Modulation of Dithienonaphthalene-Based Small-Molecule Acceptors for Nonfullerene Organic Solar Cells [J]. Acta Physico-Chimica Sinica, 2019, 35(5): 503-508. |
[4] | Yihua DENG, Aidong PENG, Xiaoxi WU, Huajie CHEN, Hui HUANG. Recent Progress in Perylene Diimide-Based Small Molecule Acceptors for Organic Solar Cells [J]. Acta Physico-Chimica Sinica, 2019, 35(5): 461-471. |
[5] | Fangbin LIU,Jun LIU,Lixiang WANG. An Organoboron Compound with a Thienyl Substituent as an Electron Acceptor for Organic Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 251-256. |
[6] | Yang YANG,Xiu JIANG,Xiaowei ZHAN,Xingguo CHEN. Designing an Organic Acceptor with Unsymmetrical Structure Based on Rhodanine and Thiazolidine-2, 4-dione Units to Study the Structure–Property Relationship [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 257-267. |
[7] | Peiyao XUE,Junxiang ZHANG,Jingming XIN,Jeromy RECH,Tengfei LI,Kaixin MENG,Jiayu WANG,Wei MA,Wei YOU,Seth R. MARDER,Ray P. S. HAN,Xiaowei ZHAN. Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 275-283. |
[8] | Yi WU, Jingyi KONG, Yunpeng QIN, Huifeng YAO, Shaoqing ZHANG, Jianhui HOU. Realizing Green Solvent Processable Non-fullerene Organic Solar Cells by Modulating the Side Groups of Conjugated Polymers [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1391-1398. |
[9] | Guoxiao JIA,Shaoqing ZHANG,Liyan YANG,Chang HE,Huili FAN,Jianhui HOU. Development of Benzodithiophene-Based A-D-A Small Molecules with Different Acceptor End Groups for Efficient Organic Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(1): 76-83. |
[10] | Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells [J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347. |
[11] | Ji-Chong LIU,Feng TANG,Feng-Ye YE,Qi CHEN,Li-Wei CHEN. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy [J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943. |
[12] | Yan-Ping LIU,Yi-Shi WU,Hong-Bing FU. Recent Progress in Singlet Exciton Fission [J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1880-1893. |
[13] | WU Zhen-Wu, LIU Yang, WEI Shang-Jiang, HUANG Xun, ZHANG Dongyu, ZHOU Ming, CHEN Liwei, MA Chang-Qi, WANG Hua. Spectrum Response Enhancement of Organic Solar Cell Using a Poly(3-hexylthiophene) Photosensitizing Layer [J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1735-1744. |
[14] | HAO Yan-Zhong;CAI Chun-Li. A Photoelectrochemical Study of the Nanostructured TiO2 /P3HT Film Electrode [J]. Acta Phys. -Chim. Sin., 2005, 21(12): 1395-1398. |
|