Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (10): 2204031.doi: 10.3866/PKU.WHXB202204031
Special Issue: Catalytic Conversion of Biomass
• ARTICLE • Previous Articles Next Articles
Jianan Teng1,2, Guangyue Xu1,2, Yao Fu1,2,*()
Received:
2022-04-18
Accepted:
2022-05-06
Published:
2022-05-16
Contact:
Yao Fu
E-mail:fuyao@ustc.edu.cn
About author:
Yao Fu, Email: fuyao@ustc.edu.cn; Tel.: +86-551-63607476Supported by:
Jianan Teng, Guangyue Xu, Yao Fu. Aerobic Oxidation of 5-Hydroxymethylfurfural to Dimethyl Furan-2, 5-dicarboxylate over CoMn@NC Catalysts Using Atmospheric Oxygen[J]. Acta Phys. -Chim. Sin. 2022, 38(10), 2204031. doi: 10.3866/PKU.WHXB202204031
"
![]() | ||||||
Entry | Catalyst | Conversion/% | Yield/% c | |||
DMFDCA | HMMF | FMF | MFDCA | |||
1 | – | 0 | n.d. | n.d. | n.d. | n.d. |
2 | Co@NC-800 | 94 | 8 | 25 | n.d. | 8 |
3 | Mn@NC-800 | 55 | < 5 | < 5 | n.d. | n.d. |
4 | Co3Mn1@NC-800 | 97 | 8 | 25 | n.d. | 7 |
5 | Co3Mn2@NC-800 | 99 | 80 | < 5 | < 5 | 14 |
6 | Co3Mn3@NC-800 | 98 | 23 | 13 | n.d. | < 5 |
7 | Co3Mn2@NC-700 | 99 | 51 | 6 | < 5 | 7 |
8 | Co3Mn2@NC-900 | 94 | 15 | 18 | n.d. | < 5 |
9 d | Co3Mn2@NC-800 | 97 | 60 | 22 | n.d. | 15 |
10 | Co3Mn2@NC-800(without P123) | 95 | 11 | 18 | n.d. | 18 |
11 | Co3Mn2@NC-800 (without HNO3) | 96 | 15 | 16 | n.d. | 8 |
1 |
BurgessS. K.;LeisenJ. E.;KraftschikB. E.;MubarakC. R.;KriegelR. M.;KorosW. J.Macromolecules2014,47,1383.
doi: 10.1021/ma5000199 |
2 |
ZhuJ. H.;CaiJ. L.;XieW. C.;ChenP. H.;GazzanoM.;ScandolaM.;GrossR. A.Macromolecules2013,46,796.
doi: 10.1021/ma3023298 |
3 |
WeinbergerS.;HaernvallK.;ScainiD.;GhazaryanG.;ZumsteinM. T.;SanderM.;PellisA.;GuebitzG. M.Green Chem.2017,19,5381.
doi: 10.1039/C7GC02905E |
4 |
PalP.;SaravanamuruganS.ChemSusChem2019,12,145.
doi: 10.1002/cssc.201801744 |
5 |
ZhaoD. Y.;SuT.;WangY. T.;VarmaR. S.;LenC.Mol. Catal.2020,495,111133.
doi: 10.1016/j.mcat.2020.111133 |
6 |
HouQ. D.;QiX. H.;ZhenM. N.;QianH. L.;NieY. F.;BaiC. Y. L.;ZhangS. Q.;BaiX. Y.;JuM. T.Green Chem.2021,23,119.
doi: 10.1039/D0GC02770G |
7 | YangY.;HeB. W.;MaH. L.;YangS.;RenZ. H.;QinT.;LuF. G.;RenL. W.;ZhangY. X.;WangT. F.;et alActa Phys. -Chim. Sin.2022,38,2201050. |
杨艳;何博文;马华隆;杨森;任州宏;秦天;卢发贵;任力闻;张熠霄;王天富;等.物理化学学报,2022,38,2201050.
doi: 10.3866/PKU.WHXB202201050 |
|
8 |
HuangX. Y.;AkdimO.;DouthwaiteM.;WangK.;ZhaoL.;LewisR. J.;PattissonS.;DanielI. T.;MiedziakP. J.;ShawG.;et alNature2022,603,271.
doi: 10.1038/s41586-022-04397-7 |
9 |
DengJ.;SongH. J.;CuiM. S.;DuY. P.;FuY.ChemSusChem2014,7,3334.
doi: 10.1002/cssc.201402843 |
10 |
LiF.;LiX. L.;LiC.;ShiJ.;FuY.Green Chem.2018,20,3050.
doi: 10.1039/C8GC01393D |
11 |
JiangY.;ManiarD.;WoortmanA. J. J.;LoosK.RSC Adv.2016,6,67941.
doi: 10.1039/C6RA14585J |
12 |
KozlovK. S.;RomashovL. V.;AnanikovV. P.Green Chem.2019,21,3464.
doi: 10.1039/C9GC00840C |
13 |
GuptaS. S. R.;VinuA.;KantamM. L.J. Catal.2020,389,259.
doi: 10.1016/j.jcat.2020.05.032 |
14 |
BessonM.;GallezotP.;PinelC.Chem. Rev.2014,114,1827.
doi: 10.1021/cr4002269 |
15 |
ShenY. H.;ZhangS. H.;LiH. J.;RenY.;LiuH. C.Chem. Eur. J.2010,16,7368.
doi: 10.1002/chem.201000740 |
16 |
TaarningE.;NielsenI. S.;EgebladK.;MadsenR.;ChristensenC. H.ChemSusChem2008,1,75.
doi: 10.1002/cssc.200700033 |
17 |
KimM.;SuY. Q.;AoshimaT.;FukuokaA.;HensenE. J. M.;NakajimaK.ACS Catal.2019,9,4277.
doi: 10.1021/acscatal.9b00450 |
18 |
CasanovaO.;IborraS.;CormaA.J. Catal2009,265,109.
doi: 10.1016/j.jcat.2009.04.019 |
19 |
ChoA.;ByunS.;ChoJ. H.;KimB. M.ChemSusChem2019,12,2310.
doi: 10.1002/cssc.201900454 |
20 |
BuonerbaA.;ImpembaS.;LittaA. D.;CapacchioneC.;MilioneS.;GrassiA.ChemSusChem2018,11,3139.
doi: 10.1002/cssc.201801560 |
21 |
JagadeeshR. V.;MurugesanK.;AlshammariA. S.;NeumannH.;PohlM. M.;RadnikJ.;BellerM.Science2017,358,326.
doi: 10.1126/science.aan6245 |
22 |
GaoZ.;LiC. Y.;FanG. L.;YangL.;LiF.Appl. Catal. B2018,226,523.
doi: 10.1016/j.apcatb.2018.01.006 |
23 |
VargaT.;BallaiG.;VásárhelyiL.;HaspelH.;KukoveczÁ.;KónyaZ.Appl. Catal. B2018,237,826.
doi: 10.1016/j.apcatb.2018.06.054 |
24 |
WeiQ. L.;YangX. H.;ZhangG. X.;WangD. N.;ZuinL.;BanhamD.;YangL. J.;YeS. Y.;WangY. L.;MohamediM.;et alAppl. Catal. B2018,237,85.
doi: 10.1016/j.apcatb.2018.05.046 |
25 |
JagadeeshR. V.;JungeH.;PohlM. M.;RadnikJ.;BrucknerA.;BellerM.J. Am. Chem. Soc.2013,135,10776.
doi: 10.1021/ja403615c |
26 |
SuH.;ZhangK. X.;ZhangB.;WangH. H.;YuQ. Y.;LiX. H.;AntoniettiM.;ChenJ. S.J. Am. Chem. Soc.2017,139,811.
doi: 10.1021/jacs.6b10710 |
27 |
ZhongW.;LiuH. L.;BaiC. H.;LiaoS. J.;LiY. W.ACS Catal.2015,5,1850.
doi: 10.1021/cs502101c |
28 |
HanJ. X.;GuF. F.;LiY. C.Chem. Asian J.2016,11,2594.
doi: 10.1002/asia.201600921 |
29 |
ZhouY. X.;ChenY. Z.;CaoL. N.;LuJ. L.;JiangH. L.Chem. Commun.2015,51,8292.
doi: 10.1039/C5CC01588J |
30 |
HuoN.;MaH.;WangX. H.;WangT. L.;WangG.;WangT.;HouL. L.;GaoJ.;XuJ.Chin. J. Catal.2017,38,1148.
doi: 10.1016/S1872-2067(17)62841-9 |
31 |
YaoY. J.;LianC.;WuG. D.;HuY.;WeiF. Y.;YuM. J.;WangS.Appl. Catal. B2017,219,563.
doi: 10.1016/j.apcatb.2017.07.064 |
32 |
WangC.;KangJ.;LiangP.;ZhangH.;SunH.;TadéM. O.;WangS. B.Environ. Sci. Nano2017,4,170.
doi: 10.1039/C6EN00397D |
33 |
XuH. D.;JiangN.;WangD.;WangL. H.;SongY. F.;ChenZ. Q.;MaJ.;ZhangT.Appl. Catal. B2020,263,118350.
doi: 10.1016/j.apcatb.2019.118350 |
34 |
ZhouH.;HongS.;ZhangH.;ChenY. T.;XuH. H.;WangX. K.;JiangZ.;ChenS. L.;LiuY.Appl. Catal. B2019,256,117767.
doi: 10.1016/j.apcatb.2019.117767 |
35 |
SunY. X.;MaH.;JiaX. Q.;MaJ. P.;LuoY.;GaoJ.;XuJ.ChemCatChem2016,8,2907.
doi: 10.1002/cctc.201600484 |
36 |
ZhuY. Q.;SunW. M.;ChenW. X.;CaoT.;XiongY.;LuoJ.;DongJ. C.;ZhengL. R.;ZhangJ.;WangX. L.;et alAdv. Funct. Mater.2018,28,1802167.
doi: 10.1002/adfm.201802167 |
37 |
HuangG. W.;WangL. Y.;LuoH. H.;ShangS. S.;ChenB.;GaoS.;AnY.Catal. Sci. Technol.2020,10,2769.
doi: 10.1039/D0CY00409J |
38 |
LuoH. H.;WangL. Y.;ShangS. S.;NiuJ. Y.;GaoS.Commun. Chem2019,2,17.
doi: 10.1038/s42004-019-0116-5 |
39 |
ChenZ. X.;LiuC. B.;LiuJ.;LiJ.;XiS. B.;ChiX.;XuH. S.;ParkI. H.;PengX. W.;LiX.;et alAdv. Mater.2020,32,1906437.
doi: 10.1002/adma.201906437 |
40 |
HanY. H.;WangZ. Y.;XuR. R.;ZhangW.;ChenW. X.;ZhengL. R.;ZhangJ.;LuoJ.;WuK. L.;ZhuY. Q.;et alAngew. Chem. Int. Ed.2018,57,11262.
doi: 10.1002/anie.201805467 |
41 |
SunK. K.;ChenS. J.;LiZ. L.;LuG. P.;CaiC.Green Chem.2019,21,1602.
doi: 10.1039/C8GC03868F |
42 |
YangW. X.;ChenL. L.;LiuX. J.;JiaJ. B.;GuoS. J.Nanoscale2017,9,1738.
doi: 10.1039/C6NR08907K |
43 |
LiuH.;JiaW. L.;YuX.;TangX.;ZengX. H.;SunY.;LeiT. Z.;FangH. Y.;LiT. Y.;LinL.ACS Catal.2021,11,7828.
doi: 10.1021/acscatal.0c04503 |
44 |
HuoL. L.;LiuB. C.;ZhangG.;SiR.;LiuJ.;ZhangJ.J. Mater. Chem. A2017,5,4868.
doi: 10.1039/C6TA10261A |
45 |
LiangH. W.;ZhuangX. D.;BrullerS.;FengX. L.;MullenK.Nat. Commun.2014,5,4973.
doi: 10.1038/ncomms5973 |
46 |
WeiW.;LiangH. W.;ParvezK.;ZhuangX. D.;FengX. L.;MullenK.Angew. Chem. Int. Ed2014,53,1570.
doi: 10.1002/anie.201307319 |
47 |
YangF.;LiuZ. H.;LiuX. D.;FengA. D.;ZhangB.;YangW.;LiY. F.Green Chem.2021,23,1026.
doi: 10.1039/D0GC03498C |
48 |
SinghD.;SoykalI. I.;TianJ.;von DeakD.;KingJ.;MillerJ. T.;OzkanU. S.J. Catal.2013,304,100.
doi: 10.1016/j.jcat.2013.04.008 |
49 |
HanY. H.;WangY. G.;ChenW. X.;XuR. R.;ZhengL. R.;ZhangJ.;LuoJ.;ShenR. A.;ZhuY. Q.;CheongW. C.;et alJ. Am. Chem. Soc.2017,139,17269.
doi: 10.1021/jacs.7b10194 |
50 |
ZhouH.;XuH. H.;LiuY.Appl. Catal. B2019,244,965.
doi: 10.1016/j.apcatb.2018.12.046 |
51 |
WangB. Y.;LinJ.;SunQ. S.;XiaC. G.;SunW.ACS Catal.2021,11,10964.
doi: 10.1021/acscatal.1c02738 |
52 |
LiL.;LiY. M.;HuangR.;CaoX. R.;WenY. H.Chem. Eur. J.2021,27,9686.
doi: 10.1002/chem.202101020 |
53 |
DongC.;QuZ. P.;QinY.;FuQ.;SunH. C.;DuanX. X.ACS Catal.2019,9,6698.
doi: 10.1021/acscatal.9b01324 |
54 |
KabirS.;ArtyushkovaK.;KieferB.;AtanassovP.Phys. Chem. Chem. Phys.2015,17,17785.
doi: 10.1039/C5CP02230D |
55 |
ArtyushkovaK.;KieferB.;HaleviB.;Knop-GerickeA.;SchloglR.;AtanassovP.Chem. Commun.2013,49,2539.
doi: 10.1039/C3CC40324F |
56 |
JuW.;BaggerA.;HaoG. P.;VarelaA. S.;SinevI.;BonV.;Roldan CuenyaB.;KaskelS.;RossmeislJ.;StrasserP.Nat. Commun.2017,8,944.
doi: 10.1038/s41467-017-01035-z |
57 |
ZhuZ. H.;HatoriH.;WangS. B.;LuG. Q.J. Phys. Chem. B2005,109,16744.
doi: 10.1021/jp051787o |
58 |
YuJ.;LuanY.;QiY.;HouJ. Y.;DongW. J.;YangM.;WangG.RSC Adv.2014,4,55028.
doi: 10.1039/C4RA06944G |
59 |
GandiniA.;SilvestreA. J. D.;NetoC. P.;SousaA. F.;GomesM.J. Polym. Sci. Part A: Polym. Chem.2009,47,295.
doi: 10.1002/pola.23130 |
60 |
MaJ. P.;PangY.;WangM.;XuJ.;MaH.;NieX.J. Mater. Chem.2012,22,3457.
doi: 10.1039/C2JM15457A |
61 |
WeiS. J.;LiA.;LiuJ. C.;LiZ.;ChenW. X.;GongY.;ZhangQ. H.;CheongW. C.;WangY.;ZhengL. R.;et alNat. Nanotechnol.2018,13,856.
doi: 10.1038/s41565-018-0197-9 |
62 |
MaldonadoS.;StevensonK. J.J. Phys. Chem. B.2004,108,11375.
doi: 10.1021/jp0496553 |
63 |
IsmagilovZ. R.;ShalaginaA. E.;PodyachevaO. Y.;IschenkoA. V.;KibisL. S.;BoroninA. I.;ChesalovY. A.;KochubeyD. I.;RomanenkoA. I.;AnikeevaO. B.;et alCarbon2009,47,1922.
doi: 10.1016/j.carbon.2009.02.034 |
64 |
ShanmugamS.;OsakaT.Chem. Commun.2011,47,4463.
doi: 10.1039/C1CC10361J |
65 |
ZhaoL.;WangL.;YuP.;ZhaoD. D.;TianC. G.;FengH.;MaJ.;FuH. G.Chem. Commun.2015,51,12399.
doi: 10.1039/C5CC04482K |
66 |
ZengL. M.;CuiX. Z.;ChenL. S.;YeT.;HuangW. M.;MaR. G.;ZhangX. H.;ShiJ. L.Carbon2017,114,347.
doi: 10.1016/j.carbon.2016.12.017 |
67 |
TuinstraF.;KoenigJ. L.J. Chem. Phys.1970,53,1126.
doi: 10.1063/1.1674108 |
68 |
MaX. J.;ChaiH.;CaoY. L.;XuJ. Y.;WangY. C.;DongH.;JiaD. Z.;ZhouW. Y.J. Colloid Interface Sci.2018,514,656.
doi: 10.1016/j.jcis.2017.12.081 |
69 |
ZhaoY. M.;WangF. F.;WeiP. J.;YuG. Q.;CuiS. C.;LiuJ. G.ChemistrySelect2018,3,207.
doi: 10.1002/slct.201702231 |
70 |
YangW. X.;LiuX. J.;YueX. Y.;JiaJ. B.;GuoS. J.J. Am. Chem. Soc.2015,137,1436.
doi: 10.1021/ja5129132 |
71 |
YangW. X.;YueX. Y.;LiuX. J.;ZhaiJ. F.;JiaJ. B.Nanoscale2015,7,11956.
doi: 10.1039/C5NR02497H |
72 |
GorbanevY. Y.;KlitgaardS. K.;WoodleyJ. M.;ChristensenC. H.;RiisagerA.ChemSusChem2009,2,672.
doi: 10.1002/cssc.200900059 |
73 |
CasanovaO.;IborraS.;CormaA.ChemSusChem2009,2,1138.
doi: 10.1002/cssc.200900137 |
74 |
DavisS. E.;HoukL. R.;TamargoE. C.;DatyeA. K.;DavisR. J.Catal. Today2011,160,55.
doi: 10.1016/j.cattod.2010.06.004 |
75 |
LuoH. H.;WangL. Y.;ShangS. S.;LiG. S.;LvY.;GaoS.;DaiW.Angew. Chem. Int. Ed.2020,59,19268.
doi: 10.1002/anie.202008261 |
76 |
DonoevaB.;MasoudN.;de JonghP. E.ACS Catal.2017,7,4581.
doi: 10.1021/acscatal.7b00829 |
77 |
SarinaS.;BaiS.;HuangY. M.;ChenC.;JiaJ. F.;JaatinenE.;AyokoG. A.;BaoZ.;ZhuH. Y.Green Chem.2014,16,331.
doi: 10.1039/C3GC41866A |
78 |
WhittakerA. M.;DongV. M.Angew. Chem. Int. Ed.2015,54,1312.
doi: 10.1002/anie.20141032 |
[1] | Ruijie Zhu, Leilei Kang, Lin Li, Xiaoli Pan, Hua Wang, Yang Su, Guangyi Li, Hongkui Cheng, Rengui Li, Xiao Yan Liu, Aiqin Wang. Photo-Thermo Catalytic Oxidation of C3H8 and C3H6 over the WO3-TiO2 Supported Pt Single-Atom Catalyst [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303003-. |
[2] | Chengbo Zhang, Xiaoping Tao, Wenchao Jiang, Junxue Guo, Pengfei Zhang, Can Li, Rengui Li. Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303034-. |
[3] | Yucui Hou, Zhuosen He, Shuhang Ren, Weize Wu. Catalytic Oxidation of Biomass to Formic Acid under O2 with Homogeneous Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212065-0. |
[4] | Zhenzhong Liu, Siwen Wan, Yang Wu, Boyan Wang, Hongliang Ji. Highly Efficient Degradation of Sulfamethoxazole Using Activating Peracetic Acid with CoFe2O4/CuO [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211019-0. |
[5] | Yaoyu Liu, Yuchen Wang, Biying Liu, Mahmoud Amer, Kai Yan. Cobalt-Vanadium Layered Double Hydroxides Nanosheets as High-Performance Electrocatalysts for Urea Oxidation Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205028-0. |
[6] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[7] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[8] | Meijia Xu, Yuchen Zhang, Yifan Zhu, Changlin Li, Zi-Ang Wu, Xiong Zhou, Kai Wu. Active Phase on Oxidized Pd(100) for Low-Temperature Propane Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305033-. |
[9] | Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305034-. |
[10] | Xinmei Ding, Yanli Liang, Hailong Zhang, Ming Zhao, Jianli Wang, Yaoqiang Chen. Preparation of Reduced Pt-Based Catalysts with High Dispersion and Their Catalytic Performances for NO Oxidation [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005009-. |
[11] | Jiuxiang Dai, Zhongmiao Gong, Shitong Xu, Yi Cui, Meiyi Yao. In Situ Study on the Initial Oxidation Behavior of Zirconium Alloys with Near-Ambient Pressure XPS [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003026-. |
[12] | Yan Yang, Bowen He, Hualong Ma, Sen Yang, Zhouhong Ren, Tian Qin, Fagui Lu, Liwen Ren, Yixiao Zhang, Tianfu Wang, Xi Liu, Liwei Chen. PtRuAgCoNi High-Entropy Alloy Nanoparticles for High-Efficiency Electrocatalytic Oxidation of 5-Hydroxymethylfurfural [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201050-. |
[13] | Shaopeng Li, Jing Du, Bin Zhang, Yanzhen Liu, Qingqing Mei, Qinglei Meng, Minghua Dong, Juan Du, Zhijuan Zhao, Lirong Zheng, Buxing Han, Meiting Zhao, Huizhen Liu. Selective Hydrogenation of 5-(Hydroxymethyl)furfural to 5-Methylfurfural by Exploiting the Synergy between Steric Hindrance and Hydrogen Spillover [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2206019-. |
[14] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[15] | Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009103-. |
|