Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (9): 2212014.doi: 10.3866/PKU.WHXB202212014
• REVIEW • Previous Articles Next Articles
Ning Wang1, Yi Li1, Qian Cui1, Xiaoyue Sun1, Yue Hu2, Yunjun Luo1, Ran Du1,*()
Received:
2022-12-07
Accepted:
2023-01-05
Published:
2023-04-03
Contact:
Ran Du
E-mail:rdu@bit.edu.cn
Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications[J]. Acta Phys. -Chim. Sin. 2023, 39(9), 2212014. doi: 10.3866/PKU.WHXB202212014
Fig 2
Analysis of gelation mechanisms 41, 42. (a) Predicting the assembly behavior of Au NPs by DLVO theory 41. Adapted from Wiley-VCH. (b–d) Fabrication of Au aerogels, the analysis of forces and the schematic illustration of the formation process 42. Adapted from American Association for the Advancement of Science."
Fig 3
Fabrication of MAs by different initiating methods 19, 42–44. (a–b) Oxidation-induced gelation methods. (a) SEM image of Au aerogels prepared by using H2O2 19. Adapted from Wiley-VCH. (b) Transmission electron microscope (TEM) images and photographs of opaque and transparent Ag gels prepared by using different amounts of C(NO2)4 42. Adapted from American Chemical Society. (c) Poor solvents-induced gelation method, Pt gels prepared with ethanol 19. Adapted from Wiley-VCH. (d) Dopamine-induced fabrication of Au gels 43. Adapted from American Chemical Society. (e) Reductants-induced gelation methods, fabrication of Pt gels with hydrazine 44. Adapted from American Chemical Society."
Fig 4
Fabrication of MAs by using salts 30, 42, 59, 61. (a) Formation of Pd aerogels by using Ca2+ 59. Adapted from American Chemical Society. (b) Formation of Au gels induced by NaCl 30. Adapted from American Chemical Society. (c) Au-Pt and Au-Rh aerogels prepared by using NH4F (SEM, TEM, and SAED images) 61. Adapted from Wiley-VCH. (d) State of the products obtained by treating Au NPs solutions with different ions 42. Adapted from American Association for the Advancement of Science."
Fig 5
Modulation of the concentration and the ligands 23, 64, 65. (a) Schematic illustration of 1D NW/nanotube aerogels prepared by gradually increasing the NW precursor concentration via controlled evaporation 23. Adapted from Nature Publishing Group. (b–c) Effects of ligands on the gelation behavior. (b) Supramolecular Pt gels prepared by assembling ligand-capped Pt NWs 64. Adapted from American Chemical Society. (c) Preparation of Au gels by the two-phase ligand exchange strategy 65. Adapted from American Chemical Society."
Fig 6
Precursor design 53, 63, 68. (a) Schematic illustration of the formation of Pd-Ni hollow nanospheres assembled aerogels 63. Adapted from Wiley-VCH. (b) The evolution of Ni NPs in the presence of Pd2+ and Pt2+, respectively 68. Adapted from Wiley-VCH. (c) Demonstration of metal NPs preparation assisted by laser ablation and fragmentation 53. Adapted from Wiley-VCH."
Fig 7
Fabrication of MAs by applying reductants 54, 69. (a) TEM images and digital photographs of the products obtained at NaBH4/Au ratios of 1/1, 4/1, and 100/1 54. Adapted from Nature Publishing Group. (b) The functions of NaBH4 at different R/M 54. Adapted from Nature Publishing Group. (c) PdPb@Pd aerogels prepared by using NaH2PO2 69. Adapted from the Royal Society of Chemistry."
Table 1
Summary of preparation methods and product parameters of typical MAs."
Composition | Initiating method or initiator | Gelation time | Density/(mg∙cm−3) | Ligament size/nm | Specific surface area/(m2∙g−1) | Reference |
Ag | evaporation concentration (313 K) | – | 88 | 113 | 5.5 | |
Au a | H2O2 | ~1 week | – | 100–500 | – | |
Ag a | H2O2 | 15 days | – | 50–100 | – | |
Pt a | ethanol | 4 weeks | – | – | – | |
Ag a | C(NO2)4 | 4–12 h | 37–41 | 5–11 b | 43–160 | |
Au-Ag-Pd a | C(NO2)4 | 16–24 h | 20–60 | 4–6 | 76–269 | |
Au-Ag | NaCl | 1–28 days | 70 | 15.4 b | 42 | |
Pd-Ag | NaCl | 1–28 days | 10 | 13.0 b | 42 | |
Pt-Ag | NaCl | 1–28 days | 180 | 13.6 b | 32 | |
Pd a | Ca2+ | 5 min–2 months | 25–59 | 3–10 | 40–108 | |
Au | NH4F, NaCl, MgCl2, KCl, NH4NO3, NH4SCN, etc. | 4–12 h | 83.0–212.8 | 6.9–113.7 | 2.5–29.7 | |
Ag | NH4F | 4–12 h | 64.8 | 21.9 | 5.2 | |
Pt | NH4F | 4–12 h | 61.4 | 42 | 3.4 | |
Pd | NH4F | 4–12 h | 44.0–62.2 | 3.7 | 122.7 | |
Au-M (M = Ag, Pd, Pt) | NH4F | 12 h | 3.1–5.8 | 34.8–68.8 | ||
Pd-Pt | NH4F | 12 h | 4.0 | 58.0 | ||
Au-Pd-Pt | NH4F | 12 h | 3.8 | 95.8 | ||
Au | dopamine | 6–72 h | 40–43 | 5–6 | 50.1 | |
PdxPty-Ni a | NaBH4 (348 K) | <6 h | 35–50 | 4–8 | 67.7–95.4 | |
Pd-Pt | NaBH4 | 3–17 days | 50–100 | 4–5 | 73–168 | |
Au a | NaBH4, DMAB, NaH2PO2 | a few minutes | 540 | 18–280 | 3.1 | |
Pd a | NaBH4, DMAB, NaH2PO2 | a few minutes | 65 | 12–65 | 15.4 | |
Pt a | NaBH4, DMAB, NaH2PO2 | A few minutes | 55 | 13–60 | 20.6 | |
Pd a | CO (313 K) | 5 h | 11 | 50–100 c | – | |
Au | excessive NaBH4 | 2–12 h | 60.5–576.5 | 4.8–38.3 | 3.5–59.8 | |
Ag, Pt, Os | excessive NaBH4 | 4–6 h | 157.2–250.6 | 48.2–226.7 | 2.1–13.2 | |
Ru, Rh | excessive NaBH4 | 4–6 h | – | 3.9–2.5 | 1.2–3.8 | |
Pd | excessive NaBH4 | 4–6 h | 51.8 | 5.6 | 69.1 | |
Au-M (M = Ag, Pd, Pt, Ir) | excessive NaBH4 | 4–6 h | 46.7–169.8 | 4.3–7.6 | 42.6–72.9 | |
NixBiy | excessive NaBH4 | 8 h | – | 30–36 | 12–44 | |
Fe-Co-Ni | excessive NaBH4 | 6 h | 36 | 52.8 | 30.7 | |
Pt a | N2H4 (hexane) | 1–5 h | 190–200 | 3–8 | 30–40 | |
Cu NWs | N2H4 (323–358 K) | 15 h | 3.8–7.5 | 70–90 | – | |
IrxCu | NaBH4 (343 K) | 2–3 h | – | 3–7 | 41.7 | |
Cu NWs | NaBH4 (353 K) | ~1 h | 4.3–7.5 | ~130 | – | |
Cu-Fe-Ni | DMAB (313K) | 12 h | – | – | 42 | |
Pd | Na2CO3 (338 K) | ~1 h | – | 3–8 | 50.1 | |
Au | freeze-casting | – | 6–23 | ~7 | – | |
Au a | freeze-casting | – | 20–60 | 200–500 | – | |
Ag a | freeze-casting | – | 10–50 | 15 | ||
Pd a | freeze-casting | – | 3–7 | 15 | ||
Pt a | freeze-casting | – | 3–10 | 33 | ||
Cu NWs | freeze-casting | – | 4.6–13.5 | – | – | |
Au | freeze-thaw | 12–24 h | 164.4 | 35.0 | – | |
Pd | freeze-thaw | 12–24 h | – | 4.5 | – | |
Rh | freeze-thaw | 12–24 h | – | 4.8 | – | |
Au-Pd | freeze-thaw | 12–24 h | 35.9 60.6 | 4.3 | 83.6 74.5 | |
Au-Pt | freeze-thaw | 12–24 h | 4.7 | |||
Au | stirring | 1–10 min | – | 10.4–19.8 | – | |
Ag | stirring | 1–10 min | – | 18.1 | – | |
Rh | stirring | 1–10 min | – | 4.1 | – | |
Pd | stirring | 1–10 min | – | 5.8 | 76.6 | |
Au-M (M = Ag, Pd, Pt, Rh, Ir, Pd-Pt) | stirring | 1–10 min | – | 3.7–7.2 | 32.0–83.6 | |
Ni NWs | N2H4 (353 K, magnetic field) | 1 h | 20–24 | 200–500 | 1.34–4.96 | |
Pt-AgHCl | HCl (GRR) | 8 h | – | 7–10 b | 24.7 | |
Pt-AgNH4OH | NH4OH (GRR) | 8 h | – | 7–10 b | 83.4 |
Fig 10
Fabrication of MAs by tuning the external fields 80–83, 87. (a–d) Design of the temperature field. (a) Acceleration of the gelation process by an elevated temperature 87. Adapted from the Royal Society of Chemistry. (b) Preparation of Cu NWs aerogels by freeze drying 81. Adapted from the Royal Society of Chemistry. (c) Photographs of Au, Ag, Pd and Pt aerogels prepared by freeze-casting 80. Adapted from Wiley-VCH. (d) Mechanisms of the freeze-thaw-directed gelation process 82. Adapted from Wiley-VCH. (e) Design of the force field, the disturbance-directed preparation of Au gels 83. Adapted from Elsevier."
Fig 11
Fabrication of the specific-structured MAs by post-treatment 85, 95, 96. (a) Schematic illustration of Pt-Ag nanotubular hydrogels prepared by partially etching Ag hydrogels 85. Adapted from American Chemical Society. (b) Scheme of treating Au2Cu aerogels with H2PdCl4 96. Adapted from Elsevier. (c) Energy Dispersive X-ray (EDX) maps of a Pd10Au-Pt core-shell aerogel 95. Adapted from Wiley-VCH."
Fig 12
MFs fabricated by dealloying or templating method 103–107. (a–b) Dealloying method. (a) SEM images of nanoporous gold (NPG) prepared by chemical corrosion with nitric acid (f-NPG) and prepared by electrochemical corrosion with nitric acid (a-NPG) 103. Adapted from American Chemical Society. (b) Ag foams prepared by sequentially dissolution and reduction of AgxNa1–xCl 104. Adapted from American Chemical Society. (c–d) Templating method. (c) Fabrication of diverse MFs via physical vapor deposition on SiO2 aerogels 105. Adapted from Wiley-VCH. (d) Fabrication of Ag foams by using sacrifice templates 106. Adapted from Elsevier. (e) Au foams prepared by combining templating and dealloying methods 107. Adapted from American Chemical Society."
Fig 13
MFs fabricated by high-temperature reduction, combustion, or 3D printing 112–117. (a–c) High-temperature reduction method, SEM images of Si, Ta, and Ti foams fabricated by magnesiothermic reduction 112–114. (a) Adapted from the Royal Society of Chemistry. (b) Adapted from Elsevier. (c) Adapted from Elsevier. (d–e) Combustion method. Energy of different ligands, and the mechanism for combustion and dynamic assembly of metal BTA complexes to form MFs 115. Adapted from Wiley-VCH. (f–g) 3D printing. (f) Printing Ag NW aqueous solutions on a cold template 116. Adapted from Wiley-VCH. (g) Au foams fabricated by successively printing Au-Ag composite ink, annealing, and dealloying 117. Adapted from American Association for the Advancement of Science."
Fig 14
MAs for the anode reactions in a fuel cell 34, 53, 63, 97, 129. (a–b) Composition design for MOR. (a–b) SEM image of Ni97Bi3 aerogels and CV curves of various Ni-Bi aerogel catalysts in 1 mol·L−1 KOH + 1 mol·L−1 methanol 34. Adapted from Wiley-VCH. (c–d) If and If/Ib of diverse ligands-modified Au-Pd aerogels for EOR and the mechanism of PVP-induced performance enhancement 53. Adapted from Wiley-VCH. (e) Chronoamperometry of Pd83Ni17 hollow nanosphere aerogel for EOR 63. Adapted from Wiley-VCH. (f–g) MAs for FOR. High-potential-driven surface restructuring design of AgPd-Ptdilute aerogels for FOR 97. Adapted from the Royal Society of Chemistry. (h–k) Lamellar Pt-Rh aerogels prepared electrocatalysts for HOR. (h–j) CV curves, polarization curves, specific activities and mass activities (at an overpotential of 50 mV) of different electrocatalysts. (k) The stability test of Pt-Rh aerogels 129. Adapted from Elsevier."
Table 2
Summary of the relevant parameters of MAs applied to alcohol oxidation reactions."
Composition | Electrolyte solution | Types of alcohol | If | Reference |
AuPt5 | 1 mol∙L−1 H2SO4 + 1 mol∙L−1 methanol | methanol | 0.51 A∙mgPt−1 | |
Pt4Ru1Cu5 | 1 mol∙L−1 KOH + 1 mol∙L−1 methanol | methanol | 2.1 A∙mgPt+Ru−1 | |
Ni97Bi3 | 1 mol∙L−1 KOH + 1 mol∙L−1 methanol | methanol | 1.8 A∙mg−1 | |
Pt-Cu | 0.5 mol∙L−1 H2SO4 + 1 mol∙L−1 methanol | methanol | 4.1 A∙mgPt−1 | |
Pt1Cu1Ir0.04 | 1 mol∙L−1 KOH + 1 mol∙L−1 methanol | methanol | 4.7 A∙mgPt−1 | |
Pd | 1 mol∙L−1 KOH + 1 mol∙L−1 methanol | methanol | 3.0 A∙mgPd−1 | |
Bi-decorated Pt | 1 mol∙L−1 KOH + 1 mol∙L−1 methanol | methanol | 8.0 A∙mgPt−1 | |
Au0.166Ag0.288Pt0.546 | 1 mol∙L−1 KOH + 1 mol∙L−1 methanol | methanol | 2.0 A∙mgPt−1 | |
Pt3Cu1 | 0.5 mol∙L−1 H2SO4 + 1 mol∙L−1 methanol | methanol | 3.8 A∙mgPt−1 | |
Pd | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 8.8 A∙mgPd−1 | |
Pdβ-CD | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 7.8 A∙mgPd−1 | |
Pd83Ni17 | 1 mol∙L−1 NaOH + 1 mol∙L−1 ethanol | ethanol | 3.6 A∙mgPd−1 | |
Pd68Cu32 | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 3.5 A∙mgPd−1 | |
Ni-Pd60Pt40 | 1 mol∙L−1 NaOH + 1 mol∙L−1 ethanol | ethanol | 6.9 A∙mgPd+Pt−1 | |
Pd | 1 mol∙L−1 NaOH + 1 mol∙L−1 ethanol | ethanol | ~3.2 A∙mgPd−1 | |
Pd | 1 mol∙L−1 KOH + 0.5 mol∙L−1 ethanol | ethanol | 4.7 A∙mgPd−1 | |
Au-Pd | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 2.7 A∙mgPd+Pt−1 | |
Au-Pd-Pt | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 4.8 A∙mgPd+Pt−1 | |
Pd-Ir | 1 mol∙L−1 KOH + 0.5 mol∙L−1 ethanol | ethanol | 5.4 A∙mgPd−1 | |
Au-Pd (PVP) | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 9.8 A∙mgPd−1 | |
Au | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 0.27 A∙mg−1 | |
Pt | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 0.99 A∙mg−1 | |
Pd | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 1.5 A∙mg−1 | |
Au2Cu@Pd-2 | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 22.1 A∙mgPd−1 | |
Pd89.3Au10.7 | 1 mol∙L−1 KOH + 0.5 mol∙L−1 ethanol | ethanol | 6.3 A∙mgPd−1 | |
Au-Pt | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 3.5 A∙mgPt−1 | |
Au-Pd | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 8.4 A∙mgPd−1 | |
Au-Pt | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 7.3 A∙mgPt−1 | |
Au-Pd-Pt | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 9.1 A∙mgPd+Pt−1 | |
Au-Pd-Pt with light | 1 mol∙L−1 KOH + 1 mol∙L−1 ethanol | ethanol | 13.2 A∙mgPd+Pt−1 | |
Pd3Pb1@Pd | 1 mol∙L−1 KOH + 0.5 mol∙L−1 glycol | glycol | 6.4 A∙mgPd−1 | |
Pd | 1 mol∙L−1 KOH + 1 mol∙L−1 glycol | glycol | ~7.8 A∙mgPd−1 | |
Pd | 1 mol∙L−1 KOH + 1 mol∙L−1 isopropanol | isopropanol | ~1.7 A∙mgPd−1 | |
Pd | 1 mol∙L−1 KOH + 1 mol∙L−1 glycerol | glycerol | ~3.5 A∙mgPd−1 |
Fig 15
MAs for ORR 52, 95, 138. (a) Correlation of relative ORR mass activity of PtxPdy aerogel catalysts with the number of potential cycles 52. Adapted from Wiley-VCH. (b) Cross-section of Pi3Ni aerogels and the optimized aerogels 138. Adapted from Wiley-VCH. (c) Mass and specific activities of the PdxM-Pt core-shell aerogels (M = Au, Ni, Co, Cu) versus the lattice parameter. (d) Polarization curves of the Pd20Au-Pt core-shell aerogel acquired in an O2-saturated 0.1 mol·L−1 HClO4 solution 95. Adapted from Wiley-VCH."
Fig 16
MAs for electrocatalytic OER, HER and CO2RR 36, 54, 61. (a–c) Au-Ir aerogels for OER, polarization curves, Tafel plots, and chronopotentiometry test 54. Adapted from Nature Publishing Group. (d–f) Pt-Rh aerogels for HER, summarized overpotentials (at 10 mA·cm−2) and the current densities (at 50 mV vs. RHE) of different catalysts in (d) 1 mol·L−1 KOH, (e) 1 mol·L−1 PBS, (f) 0.5 mol·L−1 H2SO4 aqueous solutions 61. Adapted from Wiley-VCH. (g–i) Au-Pd core-shell aerogels for CO2RR, (g) elemental distribution of the Au-Pd aerogel, (h–i) CO and H2 partial current density versus the applied potential 36. Adapted from the Royal Society of Chemistry."
Fig 17
MAs for photoelectrocatalysis towards EOR 82, 83. (a–b) Polarization curves of Au-Pd and Au-Pd-Pt aerogels, and the light response behavior on an Au-Pd-Pt aerogel electrode 83. Adapted from Elsevier. (c–d) Hierarchically structured Au-Pd aerogels and Au-Pt aerogels for photo-electrocatalytic EOR 82. Adapted from Wiley-VCH."
Fig 18
MAs for non-electrochemical catalysis and sensing 29, 75, 150. (a) Au gels as enzyme mimics for biomimetic cascade catalysis 29. Adapted from the Royal Society of Chemistry. (b–c) An electrochemical microfluidic-chip H2O2 sensor with Ag NWs gels as the working electrode 150. Adapted from the Royal Society of Chemistry. (d) Fatigue resistance test of the pressure sensor based on a Cu NWs aerogel 75. Adapted from American Chemical Society."
Fig 19
MAs for SERS and other applications 54, 81, 155, 156. (a–c) Application of Au aerogels as 3D SERS substrates. (a) Schematic presentation, (b) Raman spectra of the Au aerogel-loaded R6G molecules at different defocus states, (c) comparison of the Raman intensity retention at 1361 cm−1 with increasing defocus for an 8 nm Au film and Au aerogel 155. Adapted from Wiley-VCH. (d) The specific capacities of a Li-Ag NWs aerogel//LFP battery 156. Adapted from the Royal Society of Chemistry. (e–g) Cu NWs aerogels for selective adsorption of organic solvents in water 81. Adapted from the Royal Society of Chemistry. (h) Photos of Ru, Rh and Au-Ru aerogel before (top) and after (below) spontaneous combustion 54. Adapted from Nature Publishing Group."
1 |
Li X. ; Lu L. ; Li J. ; Zhang X. ; Gao H. Nat. Rev. Mater. 2020, 5, 706.
doi: 10.1038/s41578-020-0212-2 |
2 |
Hüsing N. ; Schubert U. Angew. Chem. Int. Ed. 1998, 37, 22.
doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I |
3 | Guinness World Records. https://www.guinnessworldrecords.com/search?term=aerogel&page=1&type=record&max=20&partial=_Results& |
4 |
Kistler S. S. Nature 1931, 127, 741.
doi: 10.1038/127741a0 |
5 | Teichner, S. J.; Nicolaon, G. A. Method of Preparing Inorganic Aerogels. US3672833A, 1972. |
6 |
Tewari P. H. ; Hunt A. J. ; Lofftus K. D. Mater. Lett. 1985, 3, 363.
doi: 10.1016/0167-577X(85)90077-1 |
7 |
Pekala R. W. J. Mater. Sci. 1989, 24, 3221.
doi: 10.1007/BF01139044 |
8 |
Mayer S. T. ; Pekala R. W. ; Kaschmitter J. L. J. Electrochem. Soc. 1993, 140, 446.
doi: 10.1149/1.2221066 |
9 |
Lu Y. ; He W. ; Cao T. ; Guo H. ; Zhang Y. ; Li Q. ; Shao Z. ; Cui Y. ; Zhang X. Sci. Rep. 2014, 4, 5792.
doi: 10.1038/srep05792 |
10 |
Du R. ; Zhao Q. ; Zhang N. ; Zhang J. Small 2015, 11, 3263.
doi: 10.1002/smll.201403170 |
11 |
Lohe M. R. ; Rose M. ; Kaskel S. Chem. Commun. 2009, 6056.
doi: 10.1039/B910175F |
12 |
Mohanan J. L. ; Arachchige I. U. ; Brock S. L. Science 2005, 307, 397.
doi: 10.1126/science.1104226 |
13 | Li G. Y. ; Wu X. H. ; He W. N. ; Fang J. H. ; Zhang X. T. Acta Phys. -Chim. Sin. 2016, 32, 2146. |
李广勇; 吴晓涵; 何伟娜; 方建慧; 张学同. 物理化学学报, 2016, 32, 2146.
doi: 10.3866/PKU.WHXB201605243 |
|
14 | Wang X. C. ; Li J. Z. ; Li G. Y. ; Wang J. ; Zhang X. T. ; Guo Q. Acta Phys. -Chim. Sin. 2017, 33, 2141. |
王叙春; 李金泽; 李广勇; 王锦; 张学同; 郭强. 物理化学学报, 2017, 33, 2141.
doi: 10.3866/PKU.WHXB201705223 |
|
15 |
Lin Z. ; Zeng Z. ; Gui X. ; Tang Z. ; Zou M. ; Cao A. Adv. Energy Mater. 2016, 6, 1600554.
doi: 10.1002/aenm.201600554 |
16 |
Rahmanian V. ; Pirzada T. ; Wang S. ; Khan S. A. Adv. Mater. 2021, 33, 2102892.
doi: 10.1002/adma.202102892 |
17 |
Feng J. ; Su B.-L. ; Xia H. ; Zhao S. ; Gao C. ; Wang L. ; Ogbeide O. ; Feng J. ; Hasan T. Chem. Soc. Rev. 2021, 50, 3842.
doi: 10.1039/C9CS00757A |
18 |
Liu W. ; Herrmann A. K. ; Bigall N. C. ; Rodriguez P. ; Wen D. ; Oezaslan M. ; Schmidt T. J. ; Gaponik N. ; Eychmüller A. Acc. Chem. Res. 2015, 48, 154.
doi: 10.1021/ar500237c |
19 |
Du R. ; Fan X. ; Jin X. ; Hübner R. ; Hu Y. ; Eychmüller A. Matter 2019, 1, 39.
doi: 10.1016/j.matt.2019.05.006 |
20 |
Qin G. W. ; Liu J. ; Balaji T. ; Xu X. ; Matsunaga H. ; Hakuta Y. ; Zuo L. ; Raveendran P. J. Phys. Chem. C 2008, 112, 10352.
doi: 10.1021/jp800923h |
21 |
Bigall N. C. ; Herrmann A. K. ; Vogel M. ; Rose M. ; Simon P. ; Carrillo-Cabrera W. ; Dorfs D. ; Kaskel S. ; Gaponik N. ; Eychmuller A. Angew. Chem. Int. Ed. 2009, 48, 9731.
doi: 10.1002/anie.200902543 |
22 |
Leventis N. ; Chandrasekaran N. ; Sotiriou-Leventis C. ; Mumtaz A. J. Mater. Chem. 2009, 19, 63.
doi: 10.1039/B815985H |
23 |
Jung S. M. ; Jung H. Y. ; Dresselhaus M. S. ; Jung Y. J. ; Kong J. Sci. Rep. 2012, 2, 849.
doi: 10.1038/srep00849 |
24 |
Jung S. M. ; Preston D. J. ; Jung H. Y. ; Deng Z. ; Wang E. N. ; Kong J. Adv. Mater. 2016, 28, 1413.
doi: 10.1002/adma.201504774 |
25 |
Zhu C. ; Shi Q. ; Fu S. ; Song J. ; Xia H. ; Du D. ; Lin Y. Adv. Mater. 2016, 28, 8779.
doi: 10.1002/adma.201602546 |
26 |
Pan Z. ; Wang Z.-Y. ; Wang M.-H. ; Yang L. ; Yu S.-H. Sci. China Mater. 2021, 64, 2868.
doi: 10.1007/s40843-021-1677-3 |
27 |
Gao H.-L. ; Xu L. ; Long F. ; Pan Z. ; Du Y.-X. ; Lu Y. ; Ge J. ; Yu S.-H. Angew. Chem. Int. Ed. 2014, 53, 4561.
doi: 10.1002/anie.201400457 |
28 |
Fang Q. ; Qin Y. ; Wang H. ; Xu W. ; Yan H. ; Jiao L. ; Wei X. ; Li J. ; Luo X. ; Liu M. ; Hu L. ; Gu W. ; Zhu C. Anal. Chem. 2022, 94, 11030.
doi: 10.1021/acs.analchem.2c01836 |
29 |
Jiao L. ; Xu W. ; Yan H. ; Wu Y. ; Gu W. ; Li H. ; Du D. ; Lin Y. ; Zhu C. Chem. Commun. 2019, 55, 9865.
doi: 10.1039/c9cc04436a |
30 |
Duan W. ; Zhang P. ; Xiahou Y. ; Song Y. ; Bi C. ; Zhan J. ; Du W. ; Huang L. ; Möhwald H. ; Xia H. ACS Appl. Mater. Interfaces 2018, 10, 23081.
doi: 10.1021/acsami.8b04823 |
31 |
Wang C. ; Duan W. ; Xing L. ; Xiahou Y. ; Du W. ; Xia H. J. Mater. Chem. B 2019, 7, 7588.
doi: 10.1039/c9tb01653h |
32 |
Xu J. ; Sun F. ; Li Q. ; Yuan H. ; Ma F. ; Wen D. ; Shang L. Small 2022, 18, 2200525.
doi: 10.1002/smll.202200525 |
33 |
Gao W. ; Lei M. ; Li L. ; Wen D. Chem. Commun. 2020, 56, 15446.
doi: 10.1039/D0CC06337A |
34 |
Dubale A. A. ; Zheng Y. ; Wang H. ; Hubner R. ; Li Y. ; Yang J. ; Zhang J. ; Sethi N. K. ; He L. ; Zheng Z. ; et al Angew. Chem. Int. Ed. 2020, 59, 13891.
doi: 10.1002/anie.202004314 |
35 |
Zheng Y. ; Yang J. ; Lu X. ; Wang H. ; Dubale A. A. ; Li Y. ; Jin Z. ; Lou D. ; Sethi N. K. ; Ye Y. ; et al Adv. Energy Mater. 2021, 11, 2002276.
doi: 10.1002/aenm.202002276 |
36 |
Du R. ; Jin W. ; Wu H. ; Hübner R. ; Zhou L. ; Xue G. ; Hu Y. ; Eychmüller A. J. Mater. Chem. A 2021, 9, 17189.
doi: 10.1039/d1ta03103a |
37 |
Jiang X. ; Du R. ; Hübner R. ; Hu Y. ; Eychmüller A. Matter 2021, 4, 54.
doi: 10.1016/j.matt.2020.10.001 |
38 |
Wen D. ; Eychmüller A. Chem. Commun. 2017, 53, 12608.
doi: 10.1039/C7CC03862C |
39 |
Hench L. L. ; West J. K. Chem. Rev. 1990, 90, 33.
doi: 10.1021/cr00099a003 |
40 |
dos Santos D. I. ; Aegerter M. A. ; Craievich A. F. ; Lours T. ; Zarzycki J. J. Non-Cryst. Solids 1987, 95–96, 1143.
doi: 10.1016/S0022-3093(87)80727-5 |
41 |
Zhang H. ; Wang D. Angew. Chem. Int. Ed. 2008, 47, 3984.
doi: 10.1002/anie.200705537 |
42 |
Du R. ; Hu Y. ; Hübner R. ; Joswig J.-O. ; Fan X. ; Schneider K. ; Eychmüller A. Sci. Adv. 2019, 5, eaaw4590.
doi: 10.1126/sciadv.aaw4590 |
43 |
Sun H. ; Xu Z. ; Gao C. Adv. Mater. 2013, 25, 2554.
doi: 10.1002/adma.201204576 |
44 |
Schneider K. ; Melnyk I. ; Hiekel K. ; Fery A. ; Auernhammer G. K. ; Eychmüller A. J. Phys. Chem. C 2019, 123, 27651.
doi: 10.1021/acs.jpcc.9b08607 |
45 |
Gao X. ; Esteves R. J. ; Luong T. T. ; Jaini R. ; Arachchige I. U. J. Am. Chem. Soc. 2014, 136, 7993.
doi: 10.1021/ja5020037 |
46 |
Gao X. ; Esteves R. J. ; Nahar L. ; Nowaczyk J. ; Arachchige I. U. ACS Appl. Mater. Interfaces 2016, 8, 13076.
doi: 10.1021/acsami.5b11582 |
47 |
Nahar L. ; Farghaly A. A. ; Esteves R. J. A. ; Arachchige I. U. Chem. Mater. 2017, 29, 7704.
doi: 10.1021/acs.chemmater.7b01731 |
48 |
Wen D. ; Liu W. ; Haubold D. ; Zhu C. ; Oschatz M. ; Holzschuh M. ; Wolf A. ; Simon F. ; Kaskel S. ; Eychmuller A. ACS Nano 2016, 10, 2559.
doi: 10.1021/acsnano.5b07505 |
49 |
Benkovičová M. ; Wen D. ; Plutnar J. ; Čížková M. ; Eychmüller A. ; Michl J. J. Phys. Chem. Lett. 2017, 8, 2339.
doi: 10.1021/acs.jpclett.7b00296 |
50 |
Wu Y. ; Jiao L. ; Xu W. ; Gu W. ; Zhu C. ; Du D. ; Lin Y. Small 2019, 15, e1900632.
doi: 10.1002/smll.201900632 |
51 |
Liu W. ; Herrmann A. K. ; Geiger D. ; Borchardt L. ; Simon F. ; Kaskel S. ; Gaponik N. ; Eychmuller A. Angew. Chem. Int. Ed. 2012, 51, 5743.
doi: 10.1002/anie.201108575 |
52 |
Liu W. ; Rodriguez P. ; Borchardt L. ; Foelske A. ; Yuan J. ; Herrmann A. K. ; Geiger D. ; Zheng Z. ; Kaskel S. ; Gaponik N. ; et al Angew. Chem. Int. Ed. 2013, 52, 9849.
doi: 10.1002/anie.201303109 |
53 |
Fan X. ; Zerebecki S. ; Du R. ; Hubner R. ; Marzum G. ; Jiang G. ; Hu Y. ; Barcikowki S. ; Reichenberger S. ; Eychmuller A. Angew. Chem. Int. Ed. 2020, 59, 5706.
doi: 10.1002/anie.201913079 |
54 |
Du R. ; Wang J. ; Wang Y. ; Hubner R. ; Fan X. ; Senkovska I. ; Hu Y. ; Kaskel S. ; Eychmuller A. Nat. Commun. 2020, 11, 1590.
doi: 10.1038/s41467-020-15391-w |
55 |
Lin Z. ; Liu S. ; Liu Y. ; Liu Z. ; Zhang S. ; Zhang X. ; Tian Y. ; Tang Z. J. Power Sources 2021, 514, 230600.
doi: 10.1016/j.jpowsour.2021.230600 |
56 |
Yan S. ; Mahyoub S. A. ; Lin J. ; Zhang C. ; Hu Q. ; Chen C. ; Zhang F. ; Cheng Z. Nanotechnology 2022, 33, 125705.
doi: 10.1088/1361-6528/ac4287 |
57 |
Naskar S. ; Freytag A. ; Deutsch J. ; Wendt N. ; Behrens P. ; Köckritz A. ; Bigall N. C. Chem. Mater. 2017, 29, 9208.
doi: 10.1021/acs.chemmater.7b03088 |
58 |
Ranmohotti K. G. S. ; Gao X. ; Arachchige I. U. Chem. Mater. 2013, 25, 3528.
doi: 10.1021/cm401968j |
59 |
Wen D. ; Herrmann A. K. ; Borchardt L. ; Simon F. ; Liu W. ; Kaskel S. ; Eychmuller A. J. Am. Chem. Soc. 2014, 136, 2727.
doi: 10.1021/ja412062e |
60 |
Wu Z. ; Wu H. ; Cai W. ; Wen Z. ; Jia B. ; Wang L. ; Jin W. ; Ma T. Angew. Chem. Int. Ed. 2021, 60, 12554.
doi: 10.1002/anie.202102832 |
61 |
Du R. ; Jin W. ; Hübner R. ; Zhou L. ; Hu Y. ; Eychmüller A. Adv. Energy Mater. 2020, 10, 1903857.
doi: 10.1002/aenm.201903857 |
62 |
López-León T. ; Santander-Ortega M. J. ; Ortega-Vinuesa J. L. ; Bastos-González D. J. Phys. Chem. C 2008, 112, 16060.
doi: 10.1021/jp803796a |
63 |
Cai B. ; Wen D. ; Liu W. ; Herrmann A. K. ; Benad A. ; Eychmuller A. Angew. Chem. Int. Ed. 2015, 54, 13101.
doi: 10.1002/anie.201505307 |
64 |
Zheng Y. ; Li N. ; Mukherjee S. ; Yang Y. ; Yan J. ; Liu J. ; Fang Y. ACS Appl. Nano Mater. 2019, 2, 3012.
doi: 10.1021/acsanm.9b00401 |
65 |
Fan X. ; Cai B. ; Du R. ; Hübner R. ; Georgi M. ; Jiang G. ; Li L. ; Samadi Khoshkhoo M. ; Sun H. ; Eychmüller A. Chem. Mater. 2019, 31, 10094.
doi: 10.1021/acs.chemmater.9b03121 |
66 |
Heuer-Jungemann A. ; Feliu N. ; Bakaimi I. ; Hamaly M. ; Alkilany A. ; Chakraborty I. ; Masood A. ; Casula M. F. ; Kostopoulou A. ; Oh E. ; et al Chem. Rev. 2019, 119, 4819.
doi: 10.1021/acs.chemrev.8b00733 |
67 |
Tang S. ; Vongehr S. ; Wang Y. ; Juan C. S. ; Xiangyu W. ; Meng X. J. Mater. Chem. A 2014, 2, 3648.
doi: 10.1039/c3ta14541g |
68 |
Cai B. ; Dianat A. ; Hubner R. ; Liu W. ; Wen D. ; Benad A. ; Sonntag L. ; Gemming T. ; Cuniberti G. ; Eychmuller A. Adv. Mater. 2017, 29, 1605254.
doi: 10.1002/adma.201605254 |
69 |
Zhu C. ; Shi Q. ; Fu S. ; Song J. ; Du D. ; Su D. ; Engelhard M. H. ; Lin Y. J. Mater. Chem. A 2018, 6, 7517.
doi: 10.1039/c7ta11233e |
70 |
Burpo F. J. ; Nagelli E. A. ; Morris L. A. ; McClure J. P. ; Ryu M. Y. ; Palmer J. L. J. Mater. Res. 2017, 32, 4153.
doi: 10.1557/jmr.2017.412 |
71 |
Jiang B. ; Wan Z. ; Kang Y. ; Guo Y. ; Henzie J. ; Na J. ; Li H. ; Wang S. ; Bando Y. ; Sakka Y. ; Yamauchi Y. Nano Energy 2021, 81, 105644.
doi: 10.1016/j.nanoen.2020.105644 |
72 |
Yazdan-Abad M. Z. ; Noroozifar M. ; Modaresi Alam A. R. ; Saravani H. J. Mater. Chem. A 2017, 5, 10244.
doi: 10.1039/c7ta03208k |
73 |
Yazdan-Abad M. Z. ; Noroozifar M. ; Douk A. S. ; Modarresi-Alam A. R. ; Saravani H. Appl. Catal. B-Environ. 2019, 250, 242.
doi: 10.1016/j.apcatb.2019.02.064 |
74 |
Song T. ; Xue H. ; Sun J. ; Guo N. ; Sun J. ; Wang Q. Chem. Commun. 2021, 57, 7140.
doi: 10.1039/d1cc02038b |
75 |
Xu X. ; Wang R. ; Nie P. ; Cheng Y. ; Lu X. ; Shi L. ; Sun J. ACS Appl. Mater. Interfaces 2017, 9, 14273.
doi: 10.1021/acsami.7b02087 |
76 |
Yan S. ; Zhong M. ; Wang C. ; Lu X. Chem. Eng. J. 2022, 430, 132955.
doi: 10.1016/j.cej.2021.132955 |
77 |
Shi Q. ; Zhu C. ; Zhong H. ; Su D. ; Li N. ; Engelhard M. H. ; Xia H. ; Zhang Q. ; Feng S. ; Beckman S. P. ; et al ACS Energy Lett. 2018, 3, 2038.
doi: 10.1021/acsenergylett.8b01338 |
78 |
Shafaei Douk A. ; Saravani H. ; Noroozifar M. Electrochim. Acta 2018, 275, 182.
doi: 10.1016/j.electacta.2018.04.073 |
79 |
Qian F. ; Troksa A. ; Fears T. M. ; Nielsen M. H. ; Nelson A. J. ; Baumann T. F. ; Kucheyev S. O. ; Han T. Y. ; Bagge-Hansen M. Nano Lett. 2020, 20, 131.
doi: 10.1021/acs.nanolett.9b03445 |
80 |
Freytag A. ; Sánchez-Paradinas S. ; Naskar S. ; Wendt N. ; Colombo M. ; Pugliese G. ; Poppe J. ; Demirci C. ; Kretschmer I. ; Bahnemann D. W. ; et al Angew. Chem. Int. Ed. 2016, 55, 1200.
doi: 10.1002/anie.201508972 |
81 |
Tang Y. ; Yeo K. L. ; Chen Y. ; Yap L. W. ; Xiong W. ; Cheng W. J. Mater. Chem. A 2013, 1, 6723.
doi: 10.1039/C3TA10969K |
82 |
Du R. ; Joswig J. O. ; Hubner R. ; Zhou L. ; Wei W. ; Hu Y. ; Eychmuller A. Angew. Chem. Int. Ed. 2020, 59, 8293.
doi: 10.1002/anie.201916484 |
83 |
Du R. ; Joswig J. O. ; Fan X. ; Hubner R. ; Spittel D. ; Hu Y. ; Eychmuller A. Matter 2020, 2, 908.
doi: 10.1016/j.matt.2020.01.002 |
84 |
Pan W. ; Liang C. ; Sui Y. ; Wang J. ; Liu P. ; Zou P. ; Guo Z. ; Wang F. ; Ren X. ; Yang C. Adv. Funct. Mater. 2022, 32, 2204166.
doi: 10.1002/adfm.202204166 |
85 |
Liu W. ; Haubold D. ; Rutkowski B. ; Oschatz M. ; Hübner R. ; Werheid M. ; Ziegler C. ; Sonntag L. ; Liu S. ; Zheng Z. ; et al Chem. Mater. 2016, 28, 6477.
doi: 10.1021/acs.chemmater.6b01394 |
86 |
Herrmann A.-K. ; Formanek P. ; Borchardt L. ; Klose M. ; Giebeler L. ; Eckert J. ; Kaskel S. ; Gaponik N. ; Eychmüller A. Chem. Mater. 2014, 26, 1074.
doi: 10.1021/cm4033258 |
87 |
Shi Q. ; Zhu C. ; Du D. ; Bi C. ; Xia H. ; Feng S. ; Engelhard M. H. ; Lin Y. J. Mater. Chem. A 2017, 5, 19626.
doi: 10.1039/c7ta06375j |
88 |
Gilbert D. A. ; Burks E. C. ; Ushakov S. V. ; Abellan P. ; Arslan I. ; Felter T. E. ; Navrotsky A. ; Liu K. Chem. Mater. 2017, 29, 9814.
doi: 10.1021/acs.chemmater.7b03978 |
89 |
Qian F. ; Lan P. C. ; Freyman M. C. ; Chen W. ; Kou T. ; Olson T. Y. ; Zhu C. ; Worsley M. A. ; Duoss E. B. ; Spadaccini C. M. ; Baumann T. ; Han T. Y. Nano Lett. 2017, 17, 7171.
doi: 10.1021/acs.nanolett.7b02790 |
90 |
Fears T. M. ; Hammons J. A. ; Sain J. D. ; Nielsen M. H. ; Braun T. ; Kucheyev S. O. APL Mater. 2018, 6, 091103.
doi: 10.1063/1.5039521 |
91 |
Müller D. ; Klepzig L. F. ; Schlosser A. ; Dorfs D. ; Bigall N. C. Langmuir 2021, 37, 5109.
doi: 10.1021/acs.langmuir.0c03619 |
92 |
Müller D. ; Zámbó D. ; Dorfs D. ; Bigall N. C. Small 2021, 17, 2007908.
doi: 10.1002/smll.202007908 |
93 |
Liang C. ; Pan W. ; Zou P. ; Liu P. ; Liu K. ; Zhao G. ; Fan H. J. ; Yang C. Small 2022, 18, e2203663.
doi: 10.1002/smll.202203663 |
94 |
Zhao H. ; Yuan Y. ; Zhang D. ; Qin Y. ; Han Y. ; Li H. ; Wang Z. ; Li S.-X. ; Lai J. ; Wang L. ACS Appl. Nano Mater. 2021, 4, 11221.
doi: 10.1021/acsanm.1c02746 |
95 |
Cai B. ; Hübner R. ; Sasaki K. ; Zhang Y. ; Su D. ; Ziegler C. ; Vukmirovic M. B. ; Rellinghaus B. ; Adzic R. R. ; Eychmüller A. Angew. Chem. Int. Ed. 2018, 57, 2963.
doi: 10.1002/anie.201710997 |
96 |
Shi Q. ; Zhu C. ; Tian M. ; Su D. ; Fu M. ; Engelhard M. H. ; Chowdhury I. ; Feng S. ; Du D. ; Lin Y. Nano Energy 2018, 53, 206.
doi: 10.1016/j.nanoen.2018.08.047 |
97 |
Wang J. ; Chen F. ; Jin Y. ; Guo L. ; Gong X. ; Wang X. ; Johnston R. L. Nanoscale 2019, 11, 14174.
doi: 10.1039/c9nr03266e |
98 |
Wang C. ; Gao W. ; Wan X. ; Yao B. ; Mu W. ; Gao J. ; Fu Q. ; Wen D. Chem. Sci. 2022, 13, 13956.
doi: 10.1039/D2SC05425F |
99 | Sosnick, B. Process for Making Foamlike Mass of Metal. US2434775A, 1948. |
100 |
Forty A. J. Nature 1979, 282, 597.
doi: 10.1038/282597a0 |
101 |
Takale B. S. ; Feng X. ; Lu Y.-M. ; Bao M. ; Jin T. ; Minato T. ; Yamamoto Y. J. Am. Chem. Soc. 2016, 138, 10356.
doi: 10.1021/jacs.6b06569 |
102 |
Cattarin S. ; Kramer D. ; Lui A. ; Musiani M. M. J. Phys. Chem. C 2007, 111, 12643.
doi: 10.1021/jp072405c |
103 |
Xu C. ; Su J. ; Xu X. ; Liu P. ; Zhao H. ; Tian F. ; Ding Y. J. Am. Chem. Soc. 2007, 129, 42.
doi: 10.1021/ja0675503 |
104 |
Wang C. ; Chen Q. Chem. Mater. 2018, 30, 3894.
doi: 10.1021/acs.chemmater.8b01431 |
105 |
Ron R. ; Gachet D. ; Rechav K. ; Salomon A. Adv. Mater. 2017, 29, 1604018.
doi: 10.1002/adma.201604018 |
106 |
Khan F. ; Eswaramoorthy M. ; Rao C. N. R. Solid State Sci. 2007, 9, 27.
doi: 10.1016/j.solidstatesciences.2006.11.002 |
107 |
Nyce G. W. ; Hayes J. R. ; Hamza A. V. ; Satcher J. H. Chem. Mater. 2007, 19, 344.
doi: 10.1021/CM062569Q |
108 |
Walsh D. ; Arcelli L. ; Ikoma T. ; Tanaka J. ; Mann S. Nat. Mater. 2003, 2, 386.
doi: 10.1038/nmat903 |
109 |
Jiang B. ; Yang X. ; Niu W. ; He C. ; Shi C. ; Zhao N. Scr. Mater. 2016, 117, 68.
doi: 10.1016/j.scriptamat.2016.02.024 |
110 |
Leventis N. ; Chandrasekaran N. ; Sadekar A. G. ; Mulik S. ; Sotiriou-Leventis C. J. Mater. Chem. 2010, 20, 7456.
doi: 10.1039/C0JM00856G |
111 |
Leventis N. ; Donthula S. ; Mandal C. ; Ding M. S. ; Sotiriou-Leventis C. Chem. Mater. 2015, 27, 8126.
doi: 10.1021/acs.chemmater.5b03898 |
112 |
Chen K. ; Bao Z. ; Shen J. ; Wu G. ; Zhou B. ; Sandhage K. H. J. Mater. Chem. 2012, 22, 16196.
doi: 10.1039/C2JM31662E |
113 |
Chen K. ; Xu W. ; Du A. ; Shen J. ; Wu G. ; Bao Z. ; Zhou B. Mater. Lett. 2014, 116, 31.
doi: 10.1016/j.matlet.2013.10.079 |
114 |
Xu W. ; Du A. ; Xiong J. ; Zhang Z. ; Shen J. ; Zhou B. Mater. Des. 2016, 97, 93.
doi: 10.1016/j.matdes.2016.02.070 |
115 |
Tappan B. C. ; Steiner Iii S. A. ; Luther E. P. Angew. Chem. Int. Ed. 2010, 49, 4544.
doi: 10.1002/anie.200902994 |
116 |
Yan P. ; Brown E. ; Su Q. ; Li J. ; Wang J. ; Xu C. ; Zhou C. ; Lin D. Small 2017, 13, 1701756.
doi: 10.1002/smll.201701756 |
117 |
Zhu C. ; Qi Z. ; Beck V. A. ; Luneau M. ; Lattimer J. ; Chen W. ; Worsley M. A. ; Ye J. ; Duoss E. B. ; Spadaccini C. M. ; et al Sci. Adv. 2018, 4, eaas9459.
doi: 10.1126/sciadv.aas9459 |
118 |
Tappan B. C. ; Huynh M. H. ; Hiskey M. A. ; Chavez D. E. ; Luther E. P. ; Mang J. T. ; Son S. F. J. Am. Chem. Soc. 2006, 128, 6589.
doi: 10.1021/ja056550k |
119 |
Gao D. ; Yang G. ; Zhu Z. ; Zhang J. ; Yang Z. ; Zhang Z. ; Xue D. J. Mater. Chem. 2012, 22, 9462.
doi: 10.1039/C2JM30548H |
120 |
Tappan B. C. ; Steiner Iii S. A. ; Dervishi E. ; Mueller A. H. ; Scott B. L. ; Sheehan C. ; Luther E. P. ; Lichthardt J. P. ; Dirmyer M. R. ACS Appl. Mater. Interfaces 2021, 13, 1204.
doi: 10.1021/acsami.0c17624 |
121 |
Shafaei Douk A. ; Saravani H. ACS Omega 2020, 5, 22031.
doi: 10.1021/acsomega.0c01661 |
122 |
Shafaei Douk A. ; Saravani H. ; Yazdan Abad M. Z. ; Noroozifar M. ACS Appl. Energy Mater. 2020, 3, 7527.
doi: 10.1021/acsaem.0c00928 |
123 |
Wang H. ; Wu Y. ; Luo X. ; Jiao L. ; Wei X. ; Gu W. ; Du D. ; Lin Y. ; Zhu C. Nanoscale 2019, 11, 10575.
doi: 10.1039/c9nr02712b |
124 |
Fang Q. ; Wang H. ; Lv X. ; Wei X. ; Luo X. ; Huang J. ; Jiao L. ; Gu W. ; Song W. ; Zhu C. ACS Sustain. Chem. Eng. 2021, 9, 13039.
doi: 10.1021/acssuschemeng.1c04765 |
125 |
Zhu L. ; Zhang R. ; Liu X. ; Zhu J. ; Guo Z. ; Zhao Y. Appl. Surf. Sci. 2022, 592, 153219.
doi: 10.1016/j.apsusc.2022.153219 |
126 |
Sarkar R. ; Farghaly A. A. ; Arachchige I. U. Chem. Mater. 2022, 34, 5874.
doi: 10.1021/acs.chemmater.2c00717 |
127 |
Tie X. ; Sun X. ; Li Q. ; Min Y. ; Xu Q. J. Electrochem. Soc. 2022, 169, 026517.
doi: 10.1149/1945-7111/ac519c |
128 |
Yang N. ; Chen D. ; Cui P. ; Lu T. ; Liu H. ; Hu C. ; Xu L. ; Yang J. SmartMat 2021, 2, 234.
doi: 10.1002/smm2.1032 |
129 |
Jin Y. ; Chen F. ; Wang J. ; Guo L. ; Jin T. ; Liu H. J. Power Sources 2019, 435, 226798.
doi: 10.1016/j.jpowsour.2019.226798 |
130 |
Douk A. S. ; Farsadrooh M. ; Damanigol F. ; Moghaddam A. A. ; Saravani H. ; Noroozifar M. RSC Adv. 2018, 8, 23539.
doi: 10.1039/c8ra03718c |
131 |
Douk A. S. ; Saravani H. ; Yazdan Abad M. Z. ; Noroozifar M. Compos. Part B-Eng. 2019, 172, 309.
doi: 10.1016/j.compositesb.2019.05.021 |
132 |
Zhang R. ; Zhu L. ; Liu X. ; Zhu J. ; Zhao Y. ACS Sustain. Chem. Eng. 2021, 9, 7837.
doi: 10.1021/acssuschemeng.1c01498 |
133 |
Wen D. ; Liu W. ; Herrmann A. K. ; Eychmuller A. Chemistry 2014, 20, 4380.
doi: 10.1002/chem.201304635 |
134 |
Wang J. ; Chen F. ; Jin Y. ; Johnston R. L. ChemSusChem 2018, 11, 1354.
doi: 10.1002/cssc.201800052 |
135 |
Wang Y.-J. ; Long W. ; Wang L. ; Yuan R. ; Ignaszak A. ; Fang B. ; Wilkinson D. P. J. E. ; Science E. Energy Environ. Sci. 2018, 11, 258.
doi: 10.1039/C7EE02444D |
136 |
Wang Y. ; Wang D. ; Li Y. SmartMat 2021, 2, 56.
doi: 10.1002/smm2.1023 |
137 |
Henning S. ; Kühn L. ; Herranz J. ; Durst J. ; Binninger T. ; Nachtegaal M. ; Werheid M. ; Liu W. ; Adam M. ; Kaskel S. ; et al J. J. Electrochem. Soc. 2016, 163, F998.
doi: 10.1149/2.0251609jes |
138 |
Henning S. ; Ishikawa H. ; Kuhn L. ; Herranz J. ; Muller E. ; Eychmuller A. ; Schmidt T. J. Angew. Chem. Int. Ed. 2017, 56, 10707.
doi: 10.1002/anie.201704253 |
139 |
Shi Q. ; Zhu C. ; Li Y. ; Xia H. ; Engelhard M. H. ; Fu S. ; Du D. ; Lin Y. Chem. Mater. 2016, 28, 7928.
doi: 10.1021/acs.chemmater.6b03549 |
140 |
Gao W. ; Fan H. ; Li L. ; Lei M. ; Wen D. Appl. Surf. Sci. 2023, 611, 155639.
doi: 10.1016/j.apsusc.2022.155639 |
141 |
Li Y. ; Peng C. K. ; Hu H. ; Chen S. Y. ; Choi J. H. ; Lin Y. G. ; Lee J. M. Nat. Commun. 2022, 13, 1143.
doi: 10.1038/s41467-022-28805-8 |
142 |
Lu L. ; Sun X. ; Ma J. ; Yang D. ; Wu H. ; Zhang B. ; Zhang J. ; Han B. Angew. Chem. Int. Ed. 2018, 57, 14149.
doi: 10.1002/anie.201808964 |
143 |
Zhong D. ; Zhang L. ; Zhao Q. ; Cheng D. ; Deng W. ; Liu B. ; Zhang G. ; Dong H. ; Yuan X. ; Zhao Z. ; Li J. ; Gong J. J. Chem. Phys. 2020, 152, 204703.
doi: 10.1063/5.0007207 |
144 |
Wang W. ; Gong S. ; Liu J. ; Ge Y. ; Wang J. ; Lv X. J. Colloid Interface Sci. 2021, 595, 159.
doi: 10.1016/j.jcis.2021.03.120 |
145 |
Chauhan P. ; Hiekel K. ; Diercks J. S. ; Herranz J. ; Saveleva V. A. ; Khavlyuk P. ; Eychmuller A. ; Schmidt T. J. ACS Mater. Au 2022, 2, 278.
doi: 10.1021/acsmaterialsau.1c00067 |
146 |
Xu Y. ; Ren K. ; Ren T. ; Wang M. ; Liu M. ; Wang Z. ; Li X. ; Wang L. ; Wang H. Chem. Commun. 2021, 57, 7525.
doi: 10.1039/d1cc02105b |
147 |
Wang N. ; Miao R. K. ; Lee G. ; Vomiero A. ; Sinton D. ; Ip A. H. ; Liang H. ; Sargent E. H. SmartMat 2021, 2, 12.
doi: 10.1002/smm2.1018 |
148 |
Zeng Y. ; Li Y. ; Tan X. ; Gong J. ; Wang Z. ; An Y. ; Wang Z. ; Li H. ACS Appl. Mater. Interfaces 2021, 13, 36816.
doi: 10.1021/acsami.1c07987 |
149 |
Tan X. ; Yang Q. ; Sun X. ; Sun P. ; Li H. ACS Appl. Mater. Interfaces 2022, 14, 10047.
doi: 10.1021/acsami.1c22625 |
150 |
Yang Y. ; Zhang H. ; Wang J. ; Yang S. ; Liu T. ; Tao K. ; Chang H. J. Mater. Chem. A 2019, 7, 11497.
doi: 10.1039/c9ta01963d |
151 |
Guan S. ; Xu B. ; Yang Y. ; Zhu X. ; Chen R. ; Ye D. ; Liao Q. ACS Appl. Nano Mater. 2022, 5, 11091.
doi: 10.1021/acsanm.2c02272 |
152 |
Li G. ; Hao J. ; Li W. ; Ma F. ; Ma T. ; Gao W. ; Yu Y. ; Wen D. Anal. Chem. 2021, 93, 14068.
doi: 10.1021/acs.analchem.1c01581 |
153 |
Gao W. ; Wen D. VIEW. 2021, 2, 20200124.
doi: 10.1002/VIW.20200124 |
154 |
Xiao Y. ; Wang C. ; Liu K. ; Wei L. ; Luo Z. ; Zeng M. ; Yi Y. J. Solgel Sci. Technol. 2021, 99, 614.
doi: 10.1007/s10971-021-05597-9 |
155 |
Zhou L. ; Peng Y. ; Zhang N. ; Du R. ; Hübner R. ; Wen X. ; Li D. ; Hu Y. ; Eychmüller A. Adv. Optical. Mater. 2021, 9, 2100352.
doi: 10.1002/adom.202100352 |
156 |
Phattharasupakun N. ; Wutthiprom J. ; Duangdangchote S. ; Sawangphruk M. Chem. Commun. 2019, 55, 5689.
doi: 10.1039/C9CC01528K |
157 |
Zhang L. ; An L. ; Wang Y. ; Lee A. ; Schuman Y. ; Ural A. ; Fleischer A. S. ; Feng G. Chem. Eng. J. 2019, 373, 857.
doi: 10.1016/j.cej.2019.05.10 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2301005-0. |
[4] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[5] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[6] | Zhanjun He, Min Huang, Tiejun Lin, Liangshu Zhong. Recent Advances in Dry Reforming of Methane via Photothermocatalysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212060-0. |
[7] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[8] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[9] | Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211005-0. |
[10] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[11] | Jingjing Wang, Guiqiang Cao, Ruixian Duan, Xiangyang Li, Xifei Li. Advances in Single Metal Atom Catalysts Enhancing Kinetics of Sulfur Cathode [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212005-0. |
[12] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[13] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[14] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[15] | Jingchao Xiang, Jingjun Li, Xue Yang, Shuiying Gao, Rong Cao. Cationic Ni-MOF-Assembled CdS/PFC-8 Catalyst for Photocatalytic Hydrogen Production with Selective Benzyl Alcohol Oxidation under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2205039-0. |
|