Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (10): 1909048.doi: 10.3866/PKU.WHXB201909048
Special Issue: Frontiers in Colloid and Interface Chemistry
Previous Articles Next Articles
Ruirui Xing, Qianli Zou, Xuehai Yan()
Received:
2019-09-26
Accepted:
2019-10-16
Published:
2020-06-11
Contact:
Xuehai Yan
E-mail:yanxh@ipe.ac.cn
Supported by:
Ruirui Xing, Qianli Zou, Xuehai Yan. Peptide-based Supramolecular Colloids[J]. Acta Physico-Chimica Sinica 2020, 36(10), 1909048. doi: 10.3866/PKU.WHXB201909048
Fig 1
(a) Schematic illustrations of Ac-AmK-NH2 (m = 3, 6, 9) peptide self-assembly 50. (b) Dependence of ΔH and morphology of peptide assemblies on the content of water 31. Fig. 1a Adapted from American Chemical Society publisher. Fig. 1b with permission from Ref. 31. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 2
Schematic illustration of C-LF self-assembling into fibrous hydrogels. AAMD simulations elucidating the intermolecular interactions in the hydrogels (white, silver, blue, and red spheres represent hydrogen, carbon, nitrogen, and oxygen atoms, respectively) 53. Adapted with permission from Ref. 53. Copyright 2019 Elsevier. "
Fig 3
(a) Proposed mechanism for the self-assembly of FF-H2TPPS microspheres 57. (b) SEM image of a single microsphere cross-section showing porous structures 57. (c) Proposed mechanism for the formation of KK-H2TPPS fiber bundles 58. (d) Confocal image of fiber bundles showing red photoluminescence 58. Fig. 3a–b Adapted with permission from Ref. 57. Copyright 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Fig. 3c–d Adapted with permission from Ref. 58. Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 4
(a) A model structure was created of Fmoc-FF peptides arranged in an anti-parallel β-sheet pattern 61. (b) Fmoc-FF forms a self-supporting transparent hydrogel 61. (c) The microscopic structure as observed by cryo-SEM presents flat bundles of fibers 61. (d) Proposed mechanism for the self-assembly of nanofibers dominated with β-sheet and α-helix secondary structures 62. Fig. 4a–c Adapted from WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. Fig. 4d Adapted with permission from Ref. 62. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 5
(a) Fabrication of photodynamic nanoparticles by amphiphilic dipeptide- or amino-acid-tuned self-assembly 64. (b) Cell internalization of the assembled NPs in vitro, the red represents photosensitizer 64. (c) Self-assembly of a peptide-porphyrin conjugate (TPP-G-FF) into photothermal peptide-porphyrin nanodots 65. (d) Temperature elevation of nanodots in water in dependence of light intensity 65. Fig. 5a–b Adapted with permission from Ref. 64. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Fig. 5c–d Adapted with permission from Ref. 65. Copyright 2017 American Chemical Society. "
Fig 6
(a) Construction of metallo-nanodrugs through cooperative coordination of peptides and photosensitizers in the presence of zinc ions. (b) TEM images of the metallo-nanodrugs. (c) The ultrasensitive response of metallo-nanodrugs to pH and GSH changes 70. (d) Construction of integrated MRI/PDT platform through cooperative coordination of peptides and photosensitizers in the presence of manganese ions 71. Fig. 6a–c Adapted with permission from Ref. 70. Copyright 2018 American Chemical Society. Fig. 6d Adapted with permission from Ref. 71. Copyright 2018 American Chemical Society. "
Fig 7
Self-evolution of porphyrin (TPPS) and dipeptide (KK) to a model of a primitive photosystem; (b) TEM image of TPPS/KK fiber bundles mineralized with TiO2 nanoparticles; (c) Time dependence of H2 evolution on TPPS/KK/Pt, TPPS/KK/TiO2, and TPPS/KK/TiO2/Pt fiber bundles 74. Adapted with permission from Ref. 74. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 8
(a) Illustration of adhering amphiphilic amino acids-templated self-assembly of a model of oxygen-evolving photosynthetic bacteria; (b) TEM image of Fmoc-L-Lys/DOPA/Co3O4 nanofibers; (c) UV-Vis absorption spectra of the nanofibers; (d) Photocatalytic oxygen evolution 75. Adapted with permission from Ref. 75. Copyright 2017 American Chemical Society. "
Fig 9
(a) Injectable self-assembled CDP-based nanocarriers for tumor delivery and effective in vivo PDT 92. (b) Average hydrodynamic diameter and (c) zeta potential of various nanocarriers 92. (d) The Fmoc-FF/PLL hydrogel can pass through a 26-gauge (260 μm) needle without clogging 93. (e) SEM and (f) TEM images of Fmoc-FF/PLL-SH hydrogels 93. Fig. 9a–c Adapted with permission from Ref. 92. Copyright 2016 American Chemical Society. Fig. 9d–f Adapted with permission from Ref. 93. Copyright 2017 American Chemical Society. "
Fig 10
SEM image, TEM image and size distribution of assembled CCNPs using CDP and Ce6 as building blocks (a) and FCNPs using Fmoc-L-Lys and Ce6 as building blocks (b); (c) Whole body fluorescence images of MCF-7-tumor-bearing nude mice intravenously injected through a tail vein with FCNPs and free Ce6; (d) Representative photos of mice after various treatments at different time point 64. Adapted with permission from Ref. 64. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 11
(a) DLS size distribution and (b) TEM image of PPP-NDs; (c) Mean temperature of the tumor sites as a function of irradiation time; (d) PA images of mice at various time points after intravenous injection of PPP-NDs; (e) Tumor volume of the mice in different groups 65. Adapted with permission from Ref. 65. Copyright 2017 American Chemical Society. "
Fig 12
(a) SEM images of the ZBMn NPs; (b) UV-Vis absorption spectra of BV monomer, ZB NPs (pH = 6.82), and ZBMn NPs (pH = 7.04); (c) DLS size profiles of the ZBMn NPs in water and in physiological culture medium incubated at 37 ℃ for 48 h; (d) Continuous irradiation-cooling profiles of the ZBMn NPs under laser irradiation; (e) In vivo biodistribution of the ZBMn NPs; (f) PAI (up) and MRI (below) of tumor-bearing mice using the ZBMn NPs as contrast agents; (g) Tumor volume of the mice monitored during the observation period; (h) Images of the tumors during the observation period 98. Adapted with permission from Ref. 98. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
1 | Shen J. C. ; Sun J. Q. Bull. Chin. Acad. Sci. 2004, 6, 420. |
沈家骢; 孙俊奇. 中国科学院院刊, 2004, 6, 420.
doi: 10.16418/j.issn.1000-3045.2004.06.006 |
|
2 | Zhang X. ; Shen J. C. Chin. Sci. Bull. 2003, 14, 1477. |
张希; 沈家骢. 科学通报, 2003, 14, 1477.
doi: 10.3321/j.issn:0023-074X.2003.14.001 |
|
3 | Yang Y. ; Li J. B. Chin. Sci. Bull. 2013, 58, 2393. |
杨洋; 李峻柏. 科学通报, 2013, 58, 2393.
doi: 10.1360/972012-1856 |
|
4 |
Wang J. ; Liu K. ; Xing R. R. ; Yan X. H. Chem. Soc. Rev. 2016, 45, 5589.
doi: 10.1039/c6cs00176a |
5 |
Ma H. M. ; Hao J. C. Chem. Soc. Rev. 2011, 40, 5457.
doi: 10.1039/c1cs15059f |
6 |
Yan X. H. ; Zhu P. L. ; Li J. B. Chem. Soc. Rev. 2010, 39, 1877.
doi: 10.1039/b915765b |
7 |
Zhang S. G. Nat. Biotechnol. 2003, 21, 1171.
doi: 10.1038/nbt874 |
8 |
Zhang J. H. ; Li Y. F. ; Zhang X. M. ; Yang B. Adv. Mater. 2010, 22, 4249.
doi: 10.1002/adma.201000755 |
9 |
Xing R. R. ; Jiao T. F. ; Yan L. Y. ; Ma G. H. ; Liu L. ; Dai L. R. ; Li J. B. ; Möhwald H. ; Yan X. H. ACS Appl. Mater. Interfaces 2015, 7, 24733.
doi: 10.1021/acsami.5b07453 |
10 | Chen Z. Q. ; Yang K. Z. Chem. Bull. 1988, 6, 56. |
陈宗淇; 杨孔章. 化学通报, 1988, 6, 56.
doi: 10.14159/j.cnki.0441-3776.1988.06.018 |
|
11 | Guo R. Chem. Bull. 2012, 75, 6. |
郭荣. 化学通报, 2012, 75, 6.
doi: 10.14159/j.cnki.0441-3776.2012.01.005 |
|
12 |
Kang Y. T. ; Liu K. ; Zhang X. Langmuir 2014, 30, 5989.
doi: 10.1021/la500327s |
13 |
Jia Y. ; Li J. B. Acc. Chem. Res. 2019, 52, 1623.
doi: 10.1021/acs.accounts.9b00015 |
14 |
Ariga K. ; Hill J. P. ; Lee M. V. ; Vinu A. ; Charvet R. ; Acharya S. Sci. Technol. Adv. Mater. 2008, 9, 014109.
doi: 10.1088/1468-6996/9/1/014109 |
15 | Wang J. ; Zou Q. L. ; Yan X. H. Acta Chim. Sin. 2017, 75, 933. |
王娟; 邹千里; 闫学海. 化学学报, 2017, 75, 933.
doi: 10.6023/A17060272 |
|
16 |
Chen C. J. ; Liu K. ; Li J. B. ; Yan X. H. Adv. Colloid Interface Sci. 2015, 225, 177.
doi: 10.1016/j.cis.2015.09.001 |
17 |
Yan X. H. ; Li J. B. ; Möhwald H. Adv. Mater. 2012, 24, 2663.
doi: 10.1002/adma.201200408 |
18 |
Reches M. ; Gazit E. Science 2003, 300, 625.
doi: 10.1126/science.1082387 |
19 |
Zhao L. Y. ; Zou Q. L. ; Yan X. H. Bull. Chem. Soc. Jpn. 2019, 92, 70.
doi: 10.1246/bcsj.20180248 |
20 |
Sun B. B. ; Tao K. ; Jia Y. ; Yan X. H. ; Zou Q. L. ; Gazit E. ; Li J. B. Chem. Soc. Rev. 2019, 48, 4387.
doi: 10.1039/c9cs00085b |
21 |
Zhao X. B. ; Pan F. ; Xu H. ; Yaseen M. ; Shan H. H. ; Hauser C. A. E. ; Zhang S. G. ; Lu J. R. Chem. Soc. Rev. 2010, 39, 3480.
doi: 10.1039/b915923c |
22 |
Li S. K. ; Zou Q. L. ; Xing R. R. ; Govindaraju T. ; Fakhrullin R. ; Yan X. H. Theranostics 2019, 9, 3249.
doi: 10.7150/thno.31814 |
23 |
Hartgerink J. D. ; Beniash E. ; Stupp S. I. Science 2001, 294, 1684.
doi: 10.1126/science.1063187 |
24 |
Yan X. H. ; Cui Y. ; Qi W. ; Su Y. ; Yang Y. ; He Q. ; Li J. B. Small 2008, 4, 1687.
doi: 10.1002/smll.200800960 |
25 |
Hu Y. Y. ; Xu L. ; Li G. H. ; Xu L. ; Song A. X. ; Hao J. C. Langmuir 2015, 31, 8599.
doi: 10.1021/acs.langmuir.5b02036 |
26 |
Yan X. H. ; Möhwald H. Biomacromolecules 2017, 18, 3469.
doi: 10.1021/acs.biomac.7b01437 |
27 |
Kai L. ; Zhang R. Y. ; Li Y. X. ; Jiao T. F. ; Ding D. ; Yan X. H. Adv. Mater. Interfaces 2017, 4, 1600183.
doi: 10.1002/admi.201770006 |
28 | Wang J. Q. ; Sun Y. J. ; Dai J. R. ; Zhao Y. R. ; Cao M. W. ; Wang D. ; Xu H. Acta Phys. -Chim. Sin. 2015, 31, 1365. |
王继乾; 孙英杰; 代景茹; 赵玉荣; 曹美文; 王栋; 徐海. 物理化学学报, 2015, 31, 1365.
doi: 10.3866/PKU.WHXB201505051 |
|
29 |
Fichman G. ; Gazit E. Acta Biomater. 2014, 10, 1671.
doi: 10.1016/j.actbio.2013.08.013 |
30 |
Yuan C. Q. ; Li S. K. ; Zou Q. L. ; Ren Y. ; Yan X. H. Phys. Chem. Chem. Phys. 2017, 19, 23614.
doi: 10.1039/c7cp01923h |
31 |
Wang J. ; Yuan C. Q. ; Han Y. C. ; Wang Y. L. ; Liu X. M. ; Zhang S. J. ; Yan X. H. Small 2017, 13, 1702175.
doi: 10.1039/C7CP01923H |
32 |
Li S. K. ; Xing R. R. ; Chang R. ; Zou Q. L. ; Yan X. H. Curr. Opin. Colloid Interface Sci. 2018, 35, 17.
doi: 10.1016/j.cocis.2017.12.004 |
33 | Cui Y. ; Fei J. B. ; Li J. B. Sci. Sin. Chim. 2011, 41, 273. |
崔岳; 费进波; 李峻柏. 中国科学:化学, 2011, 41, 273.
doi: 10.1360/032010-723 |
|
34 |
Wang D. ; Sun Y. W. ; Cao M. W. ; Wang J. Q. ; Hao J. C. RSC Adv. 2015, 5, 95604.
doi: 10.1039/c5ra18441j |
35 |
Zhao L. Y. ; Li S. K. ; Liu Y. M. ; Xing R. R. ; Yan X. H. CCS Chem. 2019, 1, 173.
doi: 10.31635/ccschem.019.20180017 |
36 |
Song J. W. ; Xing R. R. ; Jiao T. F. ; Peng Q. M. ; Yuan C. Q. ; Möhwald H. ; Yan X. H. ACS Appl. Mater. Interfaces 2018, 10, 2368.
doi: 10.1021/acsami.7b17933 |
37 |
Yan C. Q. ; Pochan D. J. Chem. Soc. Rev. 2010, 39, 3528.
doi: 10.1039/b919449p |
38 |
Abbas M. ; Zou Q. L. ; Li S. K. ; Yan X. H. Adv. Mater. 2017, 29, 1605021.
doi: 10.1002/adma.201605021 |
39 |
Li J. L. ; Xing R. R. ; Bai S. ; Yan X. H. Soft Matter 2019, 15, 1704.
doi: 10.1039/c8sm02573h |
40 |
Yuan C. Q. ; Ji W. ; Xing R. R. ; Li J. B. ; Gazit E. ; Yan X. H. Nat. Rev. Chem. 2019, 3, 567.
doi: 10.1038/s41570-019-0129-8 |
41 |
Smits F. C. M. ; Buddingh B. C. ; van Eldijk M. B. ; van Hest J. C. M. Macromol. Biosci. 2015, 15, 36.
doi: 10.1002/mabi.201400419 |
42 |
Mahadevi A. S. ; Sastry G. N. Chem. Rev. 2016, 116, 2775.
doi: 10.1021/cr500344e |
43 |
Wang J. ; Shen G. Z. ; Ma K. ; Jiao T. F. ; Liu K. ; Yan X. H. Phys. Chem. Chem. Phys. 2016, 18, 30926.
doi: 10.1039/c6cp06150h |
44 |
Xing R. R. ; Jiao T. F. ; Feng L. ; Zhang Q. R. ; Zou Q. L. ; Yan X. H. ; Zhou J. X. ; Gao F. M. Sci. Adv. Mater. 2015, 7, 1701.
doi: 10.1166/sam.2015.2411 |
45 |
Wang J. ; Liu K. ; Yan L. Y. ; Wang A. H. ; Bai S. ; Yan X. H. ACS Nano 2016, 10, 2138.
doi: 10.1021/acsnano.5b06567 |
46 |
Reches M. ; Gazit E. Nano Lett. 2004, 4, 581.
doi: 10.1021/nl035159z |
47 |
Yan X. H. ; Cui Y. ; He Q. ; Wang K. W. ; Li J. B. Chem. Mater. 2008, 20, 1522.
doi: 10.1021/cm702931b |
48 |
Han T. H. ; Kim J. ; Park J. S. ; Park C. B. ; Ihee H. ; Kim S. O. Adv. Mater. 2007, 19, 3924.
doi: 10.1002/adma.2007001839 |
49 |
Zhao Y. R. ; Wang J. Q. ; Deng L. ; Zhou P. ; Wang S. J. ; Wang Y. T. ; Xu H. ; Lu J. R. Langmuir 2013, 29, 13457.
doi: 10.1021/la402441w |
50 |
Xu H. ; Wang J. ; Han S. Y. ; Wang J. Q. ; Yu D. Y. ; Zhang H. Y. ; Xia D. H. ; Zhao X. B. ; Waigh T. A. ; Lu J. R. Langmuir 2009, 25, 4115.
doi: 10.1021/la802499n |
51 |
Hill T. A. ; Shepherd N. E. ; Diness F. ; Fairlie D. P. Angew. Chem. Int. Edit. 2014, 53, 13020.
doi: 10.1002/anie.201401058 |
52 |
Manchineella S. ; Govindaraju T. Chempluschem 2017, 82, 88.
doi: 10.1002/cplu.201600450 |
53 |
Yang M. Y. ; Xing R. R. ; Shen G. Z. ; Yuan C. Q. ; Yan X. H. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 572, 259.
doi: 10.1016/j.colsurfa.2019.04.020 |
54 |
Cao M. W. ; Xing R. R. ; Chang R. ; Wang Y. ; Yan X. H. Coord. Chem. Rev. 2019, 397, 14.
doi: 10.1016/j.ccr.2019.06.013 |
55 |
Zhao L. Y. ; Shen G. Z. ; Ma G. H. ; Yan X. H. Adv. Colloid Interface Sci. 2017, 249, 308.
doi: 10.1016/j.cis.2017.04.008 |
56 |
Li Y. X. ; Yan L. Y. ; Liu K. ; Wang J. ; Wang A. H. ; Bai S. ; Yan X. H. Small 2016, 12, 2575.
doi: 10.1002/smll.201600230 |
57 |
Zou Q. L. ; Zhang L. ; Yan X. H. ; Wang A. H. ; Ma G. H. ; Li J. B. ; Mohwald H. ; Mann S. Angew. Chem. Int. Edit. 2014, 53, 2366.
doi: 10.1002/anie.201308792 |
58 |
Liu K. ; Xing R. R. ; Chen C. J. ; Shen G. Z. ; Yan L. Y. ; Zou Q. L. ; Ma G. H. ; Möhwald H. ; Yan X. H. Angew. Chem. Int. Edit. 2015, 54, 500.
doi: 10.1002/anie.201409149 |
59 |
Liu K. ; Kang Y. ; Ma G. H. ; Möhwald H. ; Yan X. H. Phys. Chem. Chem. Phys. 2016, 18, 16738.
doi: 10.1039/c6cp01358a |
60 |
Mahler A. ; Reches M. ; Rechter M. ; Cohen S. ; Gazit E. Adv. Mater. 2006, 18, 1365.
doi: 10.1002/adma.200501765 |
61 |
Smith A. M. ; Williams R. J. ; Tang C. ; Coppo P. ; Collins R. F. ; Turner M. L. ; Saiani A. ; Ulijn R. V. Adv. Mater. 2008, 20, 37.
doi: 10.1002/adma.200701221 |
62 |
Xing R. R. ; Yuan C. Q. ; Li S. K. ; Song J. W. ; Li J. B. ; Yan X. H. Angew. Chem. Int. Edit. 2018, 57, 1537.
doi: 10.1002/anie.201710642 |
63 |
Ji W. ; Yuan C. Q. ; Chakraborty P. ; Gilead S. ; Yan X. H. ; Gazit E. Commun. Chem. 2019, 2, 65.
doi: 10.1038/s42004-019-0170-z |
64 |
Liu K. ; Xing R. R. ; Zou Q. L. ; Ma G. H. ; Möhwald H. ; Yan X. H. Angew. Chem. Int. Edit. 2016, 55, 3036.
doi: 10.1002/anie.201509810 |
65 |
Zou Q. L. ; Abbas M. ; Zhao L. Y. ; Li S. K. ; Shen G. Z. ; Yan X. H. J. Am. Chem. Soc. 2017, 139, 1921.
doi: 10.1021/jacs.6b11382 |
66 |
Ren X. K. ; Zou Q. L. ; Yuan C. Q. ; Chang R. ; Xing R. R. ; Yan X. H. Angew. Chem. Int. Edit. 2019, 58, 5872.
doi: 10.1002/anie.201814575 |
67 |
Li Y. X. ; Zou Q. L. ; Yuan C. Q. ; Li S. K. ; Xing R. R. ; Yan X. H. Angew. Chem. Int. Edit. 2018, 57, 17084.
doi: 10.1002/anie.201810087 |
68 |
Zhang H. ; Kang L. ; Zou Q. L. ; Xin X. ; Yan X. H. Curr. Opin. Biotechnol. 2019, 58, 45.
doi: 10.1016/j.copbio.2018.11.007 |
69 |
Zou Q. L. ; Yan X. H. Chem. -Eur. J. 2018, 24, 755.
doi: 10.1002/chem.201880461 |
70 |
Li S. K. ; Zou Q. L. ; Li Y. X. ; Yuan C. Q. ; Xing R. R. ; Yan X. H. J. Am. Chem. Soc. 2018, 140, 10794.
doi: 10.1021/jacs.8b04912 |
71 |
Zhang H. ; Liu K. ; Li S. K. ; Xin X. ; Yuan S. L. ; Ma G. H. ; Yan X. H. ACS Nano 2018, 12, 8266.
doi: 10.1021/acsnano.8b03529 |
72 |
Han J. J. ; Liu K. ; Chang R. ; Zhao L. Y. ; Yan X. H. Angew. Chem. Int. Edit. 2019, 58, 2000.
doi: 10.1002/anie.201811478 |
73 |
Liu K. ; Ren X. K. ; Sun J. X. ; Zou Q. L. ; Yan X. H. Adv. Sci. 2018, 5, 1701001.
doi: 10.1002/advs.201701001 |
74 |
Liu K. ; Xing R. R. ; Li Y. X. ; Zou Q. L. ; Mohwald H. ; Yan X. H. Angew. Chem. Int. Edit. 2016, 55, 12503.
doi: 10.1002/anie.201606795 |
75 |
Liu K. ; Zhang H. ; Xing R. R. ; Zou Q. L. ; Yan X. H. ACS Nano 2017, 11, 12840.
doi: 10.1021/acsnano.7b08215 |
76 |
Liu K. ; Yuan C. Q. ; Zou Q. L. ; Xie Z. C. ; Yan X. H. Angew. Chem. Int. Edit. 2017, 56, 7876.
doi: 10.1002/anie.201704678 |
77 |
Zou Q. L. ; Liu K. ; Abbas M. ; Yan X. H. Adv. Mater. 2016, 28, 1031.
doi: 10.1002/adma.201502454 |
78 | Han B. X. Acta Phys. -Chim. Sin. 2017, 33, 2125. |
韩布兴. 物理化学学报, 2017, 33, 2125.
doi: 10.3866/PKU.WHXB201706154 |
|
79 |
Hauser C. A. E. ; Zhang S. G. Chem. Soc. Rev. 2010, 39, 2780.
doi: 10.1039/b921448h |
80 |
Standley S. M. ; Toft D. J. ; Cheng H. ; Soukasene S. ; Chen J. ; Raja S. M. ; Band V. ; Band H. ; Cryns V. L. ; Stupp S. I. Cancer Res. 2010, 70, 3020.
doi: 10.1158/0008-5472.Can-09-3267 |
81 | Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C. J.; Esteve, J.; et al. Lancet 2018, 391, 1023. doi: 10.1016/S0140-6736(17)33326-3 |
82 |
Xing R. R. ; Liu K. ; Jiao T. F. ; Zhang N. ; Ma K. ; Zhang R. Y. ; Zou Q. L. ; Ma G. H. ; Yan X. H. Adv. Mater. 2016, 28, 3669.
doi: 10.1002/adma.201600284 |
83 |
Liu Y. M. ; Zhao L. Y. ; Xing R. R. ; Jiao T. F. ; Song W. X. ; Yan X. H. Chem. -Asian J. 2018, 13, 3526.
doi: 10.1002/asia.201800825 |
84 |
Abbas M. ; Xing R. R. ; Zhang N. ; Zou Q. L. ; Yan X. H. ACS Biomater. Sci. Eng. 2017, 4, 2046.
doi: 10.1021/acsbiomaterials.7b00624 |
85 |
Yan X. H. ; van Hest J. C. M. Chem. -Asian J. 2018, 13, 3331.
doi: 10.1002/asia.201801457 |
86 |
Li J. L. ; Wang A. H. ; Ren P. ; Yan X. H. ; Bai S. Chem. Commun. 2019, 55, 3191.
doi: 10.1039/c9cc00025a |
87 |
Chang R. ; Zou Q. L. ; Xing R. R. ; Yan X. H. Adv. Therap. 2019, 2, 1900048.
doi: 10.1002/adtp.201900048 |
88 |
Li J. L. ; Wang A. H. ; Zhao L. Y. ; Dong Q. Q. ; Wang M. Y. ; Xu H. L. ; Yan X. H. ; Bai S. ACS Appl. Mater. Interfaces 2018, 10, 28420.
doi: 10.1021/acsami.8b09933 |
89 |
Brown S. B. ; Brown E. A. ; Walker I. Lancet Oncol. 2004, 5, 497.
doi: 10.1016/S1470-2045(04)01529-3 |
90 | Wan J. B. ; Liu S. Z. ; Pan S. Y. ; Xu X. ; Li X. ; Ye B. Acta Phys. -Chim. Sin. 2011, 27, 32. |
万景柏; 刘淑贞; 潘树英; 许旋; 李旭; 叶冰. 物理化学学报, 2011, 27, 32.
doi: 10.3866/PKU.WHXB20110127 |
|
91 |
Sun H. F. ; Li S. K. ; Qi W. ; Xing R. R. ; Zou Q. L. ; Yan X. H. Colloid Surf. A-Physicochem. Eng. Asp. 2018, 538, 795.
doi: 10.1016/j.colsurfa.2017.11.072 |
92 |
Ma K. ; Xing R. R. ; Jiao T. F. ; Shen G. Z. ; Chen C. J. ; Li J. B. ; Yan X. H. ACS Appl. Mater. Interfaces 2016, 8, 30759.
doi: 10.1021/acsami.6b10754 |
93 |
Xing R. R. ; Li S. K. ; Zhang N. ; Shen G. Z. ; Möhwald H. ; Yan X. H. Biomacromolecules 2017, 18, 3514.
doi: 10.1021/acs.biomac.7b00787 |
94 |
Guo Z. N. ; Zhang H. ; Lu S. B. ; Wang Z. T. ; Tang S. Y. ; Shao J. D. ; Sun Z. B. ; Xie H. H. ; Wang H. Y. ; Yu X. F. ; et al Adv. Funct. Mater. 2015, 25, 6996.
doi: 10.1002/adfm.201502902 |
95 |
Hessel C. M. ; Pattani V. P. ; Rasch M. ; Panthani M. G. ; Koo B. ; Tunnell J. W. ; Korgel B. A. Nano Lett. 2011, 11, 2560.
doi: 10.1021/nl201400z |
96 |
Zhang Y. K. ; Zhang H. ; Zou Q. L. ; Xing R. R. ; Jiao T. F. ; Yan X. H. J. Mat. Chem. B 2018, 6, 7335.
doi: 10.1039/c8tb01487f |
97 | Wang X. H. ; Han Q. S. ; Li J. Y. ; Yang R. ; Diao G. W. ; Wang C. Acta Phys. -Chim. Sin. 2014, 30, 1363. |
王新环; 韩秋森; 李婧影; 杨蓉; 刁国旺; 王琛. 物理化学学报, 2014, 30, 1363.
doi: 10.3866/PKU.WHXB201405063 |
|
98 |
Xing R. R. ; Zou Q. L. ; Yuan C. Q. ; Zhao L. Y. ; Yan X. H. Adv. Mater. 2019, 31, 1900822.
doi: 10.1002/adma.201900822 |
99 |
Zhao L. Y. ; Liu Y. M. ; Chang R. ; Xing R. R. ; Yan X. H. Adv. Funct. Mater. 2019, 29, 1806877.
doi: 10.1002/adfm.201806877 |
[1] | Miaomiao Liu, Wenjuan Wang, Xiuping Hao, Xiaoyan Dong. Seeding and Cross-Seeding Aggregations of Aβ40 and hIAPP in Solution and on Surface [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002024-. |
[2] | Ye Fan, Chongmei Cao, Yun Fang, Yongmei Xia. Fabrication of Fluorescent Nanodots by Self-Crosslinking Ufasomes of Conjugated Linoleic Acid and Their Unique Fluorescence Properties [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002032-. |
[3] | Yingjie Ma, Linjie Zhi. Functionalized Graphene Materials: Definition, Classification, and Preparation Strategies [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101004-. |
[4] | Lingshan Chen, Yuanxiu Hong, Shisheng He, Zhen Fan, Jianzhong Du. Poly(ε-caprolactone)-Polypeptide Copolymer Micelles Enhance the Antibacterial Activities of Antibiotics [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1910059-. |
[5] | Miao Wang, Hongning Zheng, Fei Xu. Collagen-like Peptide Self-Assembly via Phenyl Isocyanate Induction [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1911039-. |
[6] | Jing Zhang, Lina Wang, Xiaofei Chen, Yufeng Wang, Chengyan Niu, Lixin Wu, Zhiyong Tang. Redox-Regulated Dynamic Self-Assembly of a Lindqvist-Type Polyoxometalate Complex [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912002-. |
[7] | Yanan Zhao, Min He, Xiaofang Liu, Bin Liu, Jianhui Yang. Self-Assembly and Structural Characterization of Au Binary Nanocrystal Superlattices [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1908041-. |
[8] | Ruijie Chen,Di Li,Zhenyuan Fang,Yuanyong Huang,Bifu Luo,Weidong Shi. Controlling Self-Assembly of 3D In2O3 Nanostructures for Boosting Photocatalytic Hydrogen Production [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1903047-. |
[9] | Feixue Gao, Yongjun Chen, Dongsheng Liu, Minghua Liu, Zhongqun Tian, Xi Zhang. Review of Major Research Plan on "Controlled Self-assembly Systems and Functionalization" [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 2006060-. |
[10] | Junyan Xiao, Limin Qi. Controllable Self-Assembly of Gold Nanorods via Host–Guest Interaction between Cyclodextrins and Surfactants [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910001-. |
[11] | Aoneng Cao. "Confined Lowest Energy Structure Fragments (CLESFs)" Hypothesis for Protein Structure and the "Stone Age" of Protein Prebiotic Evolution [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907002-. |
[12] | Shihao CHEN,Ming WANG,Xuefeng JIANG. C―H Functionalization Strategies for the Construction of Thioethers [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 954-967. |
[13] | Mengdi ZHAO,Wenjun LU. Alkanes Functionalization via C―H Activation [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 977-988. |
[14] | Jiali FANG, Xin CHEN, Chang LI, Yulian WU. Observation of the Gold Nanorods/Graphene Composite Formation and Motion with in situ Liquid Cell Transmission Electron Microscopy [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 808-815. |
[15] | Xiejun XU,Xingqing XIAO,Shouhong XU,Honglai LIU. Computational Study of Thermosensitivity of Liposomes Modulated by Leucine Zipper-Structured Lipopeptides [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 598-606. |
|