Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2007089.doi: 10.3866/PKU.WHXB202007089
Special Issue: CO2 Reduction
• ARTICLE • Previous Articles Next Articles
Yanqiu Wang, Zixin Zhong, Tangkang Liu, Guoliang Liu(), Xinlin Hong()
Received:
2020-07-29
Accepted:
2020-08-25
Published:
2020-08-28
Contact:
Guoliang Liu,Xinlin Hong
E-mail:liugl@whu.edu.cn;hongxl@whu.edu.cn
About author:
Email: hongxl@whu.edu.cn (H.X.)Supported by:
Yanqiu Wang, Zixin Zhong, Tangkang Liu, Guoliang Liu, Xinlin Hong. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol[J]. Acta Phys. -Chim. Sin. 2021, 37(5), 2007089. doi: 10.3866/PKU.WHXB202007089
"
Catalyst and preparation method | Experimental conditions | Catalytic performance | Ref. | |||||||
Catalyst | Preparation method | T/℃, P/MPa | GHSV (mL·g-1·h-1) | H2/CO2 | CO2 conversion (%) | Methanol selectivity (%) | Methanol STY (g·kg-1·h-1) | |||
Cu (58.6% a)/ZrO2 | coprecipitation | 200, 1.0 | 8800 | 3 | 2.2 | 93 | 59 | |||
Cu (11% a)/ZrO2 | two-nozzle flame spray pyrolysis | 270, 2.0 | 360000-2483 | 3 | 1.8-4 | 35-55 | N/A | |||
Cu/ZrO2 (1 : 1) atom ratio | urea-nitrate combustion method | 220, 3.0 | 3600 | 3 | 5.3 | 58 | 35 | |||
Cu/Zn/Zr (2 : 1 : 0.09) atom ratio | spray drying method | 250, 5.0 | 4000 | 3 | 25.9 | 61.5 | 218 | |||
CuZnZr (42% a) | coprecipitation | 240, 5.0 | 9600 | 3 | 22.4 | 64 | 452 | |||
Cu/ZnO/ZrO2 (30% a) | coprecipitation | 240, 5.0 | 10000 h-1 | 3 | 14.3 | 45 | 283 | |||
Cu/ZrO2 (8% a) | incipient wetness impregnation | 230, 1 | 8372 | 3 | ~2.4 | 72-73 | 45 | |||
CU-0.5-300 | in-situ construction | 260, 4.5 | 21600 | 3 | 13.1 | 78.8 | 796 | |||
CZ-0.5-400 | calcination of Cu@UiO-66 | 280, 4.5 | 21600 | 3 | 11.1 | 68.4 | 588 | this work |
1 |
Zhao Y. F. ; Gao W. ; Li S. W. ; Williams G. R. ; Mahadi A. H. ; Ma D. Joule 2019, 3 (4), 920.
doi: 10.1016/j.joule.2019.03.003 |
2 |
Alvarez A. ; Bansode A. ; Urakawa A. ; Bavykina A. V. ; Wezendonk T. A. ; Makkee M. ; Gascon J. ; Kapteijn F. Chem. Rev. 2017, 117 (14), 9804.
doi: 10.1021/acs.chemrev.6b00816 |
3 | Han B. Acta Phys. -Chim. Sin. 2018, 34 (6), 555. |
韩布兴. 物理化学学报, 2018, 34 (6), 555.
doi: 10.3866/PKU.WHXB201710302 |
|
4 | Yin Y. ; Hu B. ; Liu G. ; Zhou X. ; Hong X. Acta Phys. -Chim. Sin. 2019, 35 (3), 327. |
尹雅芝; 胡兵; 刘国亮; 周晓海; 洪昕林. 物理化学学报, 2019, 35 (3), 327.
doi: 10.3866/PKU.WHXB201803212 |
|
5 |
Ro I. ; Liu Y. ; Ball M. R. ; Jackson D. H. K. ; Chada J. P. ; Sener C. ; Kuech T. F. ; Madon R. J. ; Huber G. W. ; Dumesic J. A. ACS Catal. 2016, 6 (10), 7040.
doi: 10.1021/acscatal.6b01805 |
6 |
Samson K. ; Sliwa M. ; Socha R. P. ; Gora-Marek K. ; Mucha D. ; Rutkowska-Zbik D. ; Paul J. F. ; Ruggiero-Mikolajczyk M. ; Grabowski R. ; Sloczynski J. ACS Catal. 2014, 4 (10), 3730.
doi: 10.1021/cs500979c |
7 |
Tada S. ; Katagiri A. ; Kiyota K. ; Honma T. ; Kamei H. ; Nariyuki A. ; Uchida S. ; Satokawa S. J. Phys. Chem. C 2018, 122 (10), 5430.
doi: 10.1021/acs.jpcc.7b11284 |
8 |
Witoon T. ; Chalorngtham J. ; Dumrongbunditkul P. ; Chareonpanich M. ; Limtrakul J. Chem. Eng. J. 2016, 293, 327.
doi: 10.1016/j.cej.2016.02.069 |
9 | Liu Y. ; Hu B. ; Yin Y. ; Liu G. ; Hong X. Acta Phys. -Chim. Sin. 2019, 35 (2), 223. |
刘艳芳; 胡兵; 尹雅芝; 刘国亮; 洪昕林. 物理化学学报, 2019, 35 (2), 223.
doi: 10.3866/PKU.WHXB201802263 |
|
10 | Ye W. Acta Phys. -Chim. Sin. 2017, 33 (5), 857. |
王野. 物理化学学报, 2017, 33 (5), 857.
doi: 10.3866/PKU.WHXB201703172 |
|
11 |
Centi G. ; Perathoner S. Catal. Today 2009, 148 (3-4), 191.
doi: 10.1016/j.cattod.2009.07.075 |
12 |
Porosoff M. D. ; Yan B. ; Chen J. G. Energy Environ. Sci. 2016, 9 (1), 62.
doi: 10.1039/c5ee02657a |
13 |
Hu B. ; Yin Y. ; Zhong Z. ; Wu D. ; Liu G. ; Hong X. Catal. Sci. Technol. 2019, 9 (10), 2673.
doi: 10.1039/c8cy02546k |
14 |
Kattel S. ; Ramirez P. J. ; Chen J. G. ; Rodriguez J. A. ; Liu P. Science 2017, 355 (6331), 1296.
doi: 10.1126/science.aal3573 |
15 |
Baltes C. ; Vukojevic S. ; Schueth F. J. Catal. 2008, 258 (2), 334.
doi: 10.1016/j.jcat.2008.07.004 |
16 |
Saito M. ; Fujitani T. ; Takeuchi M. ; Watanabe T. Appl. Catal. A 1996, 138 (2), 311.
doi: 10.1016/0926-860x(95)00305-3 |
17 |
Kuld S. ; Thorhauge M. ; Falsig H. ; Elkjaer C. F. ; Helveg S. ; Chorkendorff I. ; Sehested J. Science 2016, 352 (6288), 969.
doi: 10.1126/science.aaf0718 |
18 |
Behrens M. ; Studt F. ; Kasatkin I. ; Kuehl S. ; Haevecker M. ; Abild-Pedersen F. ; Zander S. ; Girgsdies F. ; Kurr P. ; Kniep B.-L. ; et al Science 2012, 336 (6083), 893.
doi: 10.1126/science.1219831 |
19 | Gao P. ; Li F. ; Zhao N. ; Wang H. ; Wei W. ; Sun Y.-H. Acta Phys. -Chim. Sin. 2014, 30 (6), 1155. |
高鹏; 李枫; 赵宁; 王慧; 魏伟; 孙予罕. 物理化学学报, 2014, 30 (6), 1155.
doi: 10.3866/PKU.WHXB201401252 |
|
20 |
Li K. ; Chen J. G. ACS Catal. 2019, 9 (9), 7840.
doi: 10.1021/acscatal.9b01943 |
21 |
Li W. ; Nie X. ; Jiang X. ; Zhang A. ; Ding F. ; Liu M. ; Liu Z. ; Guo X. ; Song C. Appl. Catal. B 2018, 220, 397.
doi: 10.1016/j.apcatb.2017.08.048 |
22 |
Tada S. ; Kayamori S. ; Honma T. ; Kamei H. ; Nariyuki A. ; Kon K. ; Toyao T. ; Shimizu K. -I. ; Satokawa S. ACS Catal. 2018, 8 (9), 7809.
doi: 10.1021/acscatal.8b01396 |
23 |
Larmier K. ; Liao W. -C. ; Tada S. ; Lam E. ; Verel R. ; Bansode A. ; Urakawa A. ; Comas-Vives A. ; Coperet C. Angew. Chem. Int. Ed. 2017, 56 (9), 2318.
doi: 10.1002/anie.201610166 |
24 |
Rhodes M. D. ; Bell A. T. J. Catal. 2005, 233 (1), 198.
doi: 10.1016/j.jcat.2005.04.026 |
25 |
Liu T. ; Hong X. ; Liu G. ACS Catal. 2020, 10 (1), 93.
doi: 10.1021/acscatal.9b03738 |
26 |
Graciani J. ; Mudiyanselage K. ; Xu F. ; Baber A. E. ; Evans J. ; Senanayake S. D. ; Stacchiola D.J. ; Liu P. ; Hrbek J. ; Fernandez Sanz J. ; et al Science 2014, 345 (6196), 546.
doi: 10.1126/science.1253057 |
27 |
van de Water L. G. A. ; Wilkinson S. K. ; Smith R. A. P. ; Watson M. J. J. Catal. 2018, 364, 57.
doi: 10.1016/j.jcat.2018.04.026 |
28 |
Choi E. J. ; Lee Y. H. ; Lee D. -W. ; Moon D. -J. ; Lee K.-Y. Mol. Catal. 2017, 434, 146.
doi: 10.1016/j.mcat.2017.02.005 |
29 |
Ouyang B. ; Tan W. ; Liu B. Catal. Commun. 2017, 95, 36.
doi: 10.1016/j.catcom.2017.03.005 |
30 |
Sato A. G. ; Volanti D. P. ; Meira D. M. ; Damyanova S. ; Longo E. ; Bueno J. M. C. J. Catal. 2013, 307, 1.
doi: 10.1016/j.jcat.2013.06.022 |
31 |
Tang Q. -L. ; Hong Q. -J. ; Liu Z.-P. J. Catal. 2009, 263 (1), 114.
doi: 10.1016/j.jcat.2009.01.017 |
32 |
Therdthianwong S. ; Siangchin C. ; Therdthianwong A. Fuel Process. Technol. 2008, 89 (2), 160.
doi: 10.1016/j.fuproc.2007.09.003 |
33 |
Wei J. M. ; Xu B. Q. ; Li J. L. ; Cheng Z. X. ; Zhu Q. M. Appl. Catal., A 2000, 196 (2), L167.
doi: 10.1016/s0926-860x(99)00504-9 |
34 |
An B. ; Zhang J. ; Cheng K. ; Ji P. ; Wang C. ; Lin W. J. Am. Chem. Soc. 2017, 139 (10), 3834.
doi: 10.1021/jacs.7b00058 |
35 |
Furukawa H. ; Cordova K. E. ; O'Keeffe M. ; Yaghi O. M. Science 2013, 341 (6149), 974.
doi: 10.1126/science.1230444 |
36 |
Rungtaweevoranit B. ; Baek J. ; Araujo J. R. ; Archanjo B. S. ; Choi K. M. ; Yaghi O. M. ; Somotjai G. A. Nano Lett. 2016, 16 (12), 7645.
doi: 10.1021/acs.nanolett.6b03637 |
37 |
Wang X. ; Zhou J. ; Fu H. ; Li W. ; Fan X. ; Xin G. ; Zheng J. ; Li X. J. Mater. Chem. A 2014, 2 (34), 14064.
doi: 10.1039/c4ta01506a |
38 |
Zhu W. ; Zhang C. ; Li Q. ; Xiong L. ; Chen R. ; Wan X. ; Wang Z. ; Chen W. ; Deng Z. ; Peng Y. Appl. Catal. B 2018, 238, 339.
doi: 10.1016/j.apcatb.2018.07.024 |
39 |
Han Y. ; Xu H. ; Su Y. ; Xu Z. -L. ; Wang K. ; Wang W. J. Catal. 2019, 370, 70.
doi: 10.1016/j.jcat.2018.12.005 |
40 |
Hou S. L. ; Dong J. ; Jiang X. L. ; Jiao Z. H. ; Zhao B. Angew. Chem. Int. Ed. 2019, 58 (2), 577.
doi: 10.1002/anie.201811506 |
41 |
Shearer G. C. ; Chavan S. ; Bordiga S. ; Svelle S. ; Olsbye U. ; Lillerud K. P. Chem. Mater. 2016, 28 (11), 3749.
doi: 10.1021/acs.chemmater.6b00602 |
42 |
Aguila G. ; Guerrero S. ; Araya P. Catal. Commun. 2008, 9 (15), 2550.
doi: 10.1016/j.catcom.2008.07.011 |
43 |
Espinos J. P. ; Morales J. ; Barranco A. ; Caballero A. ; Holgado J. P. ; Gonzalez-Elipe A. R. J. Phys. Chem. B 2002, 106 (27), 6921.
doi: 10.1021/jp014618m |
44 |
Ritzkopf I. ; Vukojevic S. ; Weidenthaler C. ; Grunwaldt J. D. ; Schuth F. Appl. Catal. A 2006, 302 (2), 215.
doi: 10.1016/j.apcata.2006.01.014 |
45 |
Oguchi H. ; Kanai H. ; Utani K. ; Matsumura Y. ; Imamura S. Appl. Catal. A 2005, 293, 64.
doi: 10.1016/j.apcata.2005.07.010 |
46 |
Evans J. W. ; Wainwright M. S. ; Bridgewater A. J. ; Young D. J. Appl. Catal. 1983, 7 (1), 75.
doi: 10.1016/0166-9834(83)80239-5 |
47 |
Arena F. ; Italiano G. ; Barbera K. ; Bordiga S. ; Bonura G. ; Spadaro L. ; Frusteri F. Appl. Catal. A 2008, 350 (1), 16.
doi: 10.1016/j.apcata.2008.07.028 |
48 |
Tada S. ; Larmier K. ; Buchel R. ; Coperet C. Catal. Sci. Technol. 2018, 8 (8), 2056.
doi: 10.1039/c8cy00250a |
49 |
Guo X. ; Mao D. ; Lu G. ; Wang S. ; Wu G. J. Mol. Catal. A: Chem. 2011, 345 (1-2), 60.
doi: 10.1016/j.molcata.2011.05.019 |
50 |
Zhang Y. ; Zhong L. ; Wang H. ; Gao P. ; Li X. ; Xiao S. ; Ding G. ; Wei W. ; Sun Y. J. CO2 Util. 2016, 15, 72.
doi: 10.1016/j.jcou.2016.01.005 |
51 |
Arena F. ; Mezzatesta G. ; Zafarana G. ; Trunfio G. ; Frusteri F. ; Spadaro L. Catal. Today 2013, 210, 39.
doi: 10.1016/j.cattod.2013.02.016 |
52 |
Angelo L. ; Kobl K. ; Tejada L. M. M. ; Zimmermann Y. ; Parkhomenko K. ; Roger A.-C. C. R. Chim. 2015, 18 (3), 250.
doi: 10.1016/j.crci.2015.01.001 |
53 |
Fisher I. A. ; Bell A. T. J. Catal. 1997, 172 (1), 222.
doi: 10.1006/jcat.1997.1870 |
54 | Kattel S. ; Yan B. ; Yang Y. ; Chen J. G. ; Liu P. J. Am. Chem. Soc. 2016, 138 (38), 12440. |
55 |
Guo X. ; Li J. ; Zhou R. Fuel 2016, 163, 56.
doi: 10.1016/j.fuel.2015.09.043 |
56 |
Xie Y. ; Yin Y. L. ; Zeng S. H. ; Gao M. Y. ; Su H. Q. Catal. Commun. 2017, 99, 110.
doi: 10.1016/j.catcom.2017.06.003 |
57 |
Li H. ; Su Z. ; Hu S. ; Yan Y. Appl. Catal. B 2017, 207, 134.
doi: 10.1016/j.apcatb.2017.02.013 |
58 |
Dasireddy V. D. B. C. ; Likozar B. Renewable Energy 2019, 140, 452.
doi: 10.1016/j.renene.2019.03.073 |
59 |
Cabilla G. C. ; Bonivardi A. L. ; Baltanas M. A. J. Catal. 2001, 201 (2), 213.
doi: 10.1006/jcat.2001.3253 |
[1] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[2] | Yi Zhou, Weilong Ouyang, Yuejun Wang, Haiqiang Wang, Zhongbiao Wu. Core-Shell Structured NH2-UiO-66@TiO2 Photocatalyst for the Degradation of Toluene under Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009045-. |
[3] | Congming Li, Kuo Chen, Xiaoyue Wang, Nan Xue, Hengquan Yang. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009101-. |
[4] | Yazhi YIN,Bing HU,Guoliang LIU,Xiaohai ZHOU,Xinlin HONG. ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 327-336. |
[5] | Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872. |
[6] | Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond [J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105. |
[7] | GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-Han . Preparation of Cu/Zn/Al/(Zr)/(Y) Catalysts from Hydrotalcite-Like Precursors and Their Catalytic Performance for the Hydrogenation of CO2 to Methanol [J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1155-1162. |
[8] | WANG Guan-Nan, CHEN Li-Min, GUO Yuan-Yuan, FU Ming-Li, WU Jun-Liang, HUANG Bi-Chun, YE Dai-Qi. Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation [J]. Acta Phys. -Chim. Sin., 2014, 30(5): 923-931. |
[9] | HAO Ai-Xiang, YU Yang, CHEN Hai-Bo, MAO Chun-Peng, WEI Shi-Xin, YIN Yu-Sheng. Effect of Surface Promoters-Modifying on Catalytic Performance of Cu/ZnO/Al2O3 Methanol Synthesis Catalyst [J]. Acta Phys. -Chim. Sin., 2013, 29(09): 2047-2055. |
[10] | GUO Xiao-Ming, MAO Dong-Sen, LU Guan-Zhong, WANG Song. Preparation of CuO-ZnO-ZrO2 by Citric Acid Combustion Method and Its Catalytic Property for Methanol Synthesis from CO2 Hydrogenation [J]. Acta Phys. -Chim. Sin., 2012, 28(01): 170-176. |
[11] | XU Hui-Yuan; CHU Wei; CI Zhi-Min. Effect of Glow Discharge Plasma on Copper-based Catalysts for Methanol Synthesis [J]. Acta Phys. -Chim. Sin., 2007, 23(07): 1042-1046. |
[12] | JIA Yu-Xiang; GUO Xiang-Yun. Monte Carlo Simulation of Adsorption Process of CO and H2 in Supercritical Fluids [J]. Acta Phys. -Chim. Sin., 2005, 21(03): 306-309. |
[13] | Wang Jin;Chen Hong-Bo;Yun Hong;Lin Jing-Dong;Yi Jun;Zhang Hong-Bin;Liao Dai-Wei. Study on Rh-ZnO/MWNTs Catalyst for Methanol Synthesis [J]. Acta Phys. -Chim. Sin., 2003, 19(01): 65-69. |
[14] | Wu Gui-Sheng, Ren Jie, Sun Yu-Han. The Effect of Calcination Temperature on The Performance of Cu/ZrO2 and Cu-La2O3/ZrO2 [J]. Acta Phys. -Chim. Sin., 1999, 15(06): 564-567. |
[15] | Chen Hong-Bo, Yu La-Jia, Liao Dai-Wei, Lin Guo-Dong, Zhang Hong-Bin, Cai Qi-Rui. The Effect of Cr2O3 over Copper-based Catalysts for Methanol Synthesis [J]. Acta Phys. -Chim. Sin., 1998, 14(06): 534-539. |
|