物理化学学报 >> 2011, Vol. 27 >> Issue (02): 408-412.doi: 10.3866/PKU.WHXB20110237

电化学和新能源 上一篇    下一篇

室温合成金红石TiO2及其在染料敏化太阳能电池中的应用

刘佳1,2, 杨浩田1,2, 张敬波1, 周晓文1, 林原1   

  1. 1. 中国科学院化学研究所光化学重点实验室, 北京分子科学国家实验室, 北京 100190;
    2. 中国科学院研究生院, 北京 100049
  • 收稿日期:2010-10-15 修回日期:2010-12-03 发布日期:2011-01-25
  • 通讯作者: 林原 E-mail:linyuan@iccas.ac.cn
  • 基金资助:

    国家重点基础研究发展规划项目(973) (2006CB202605), 国家高技术研究发展规划(863)(2007AA05Z439)和国家自然科学基金(20973183)资助

Room Temperature Synthesis of Rutile TiO2 and Its Application in Dye-Sensitized Solar Cells

LIU Jia1,2, YANG Hao-Tian1,2, ZHANG Jing-Bo1, ZHOU Xiao-Wen1, LIN Yuan1   

  1. 1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Received:2010-10-15 Revised:2010-12-03 Published:2011-01-25
  • Contact: LIN Yuan E-mail:linyuan@iccas.ac.cn
  • Supported by:

    The project was supported by the National Key Basic Research Program of China (973) (2006CB202605), High-Tech Research and Development Program of China (983) (2007AA05Z439), and National Natural Science Foundation of China (20973183).

摘要:

以钛酸四丁酯为前驱体, 在室温下通过水解沉淀法合成了金红石型TiO2纳米粒子; 用X射线衍射(XRD)研究了反应温度、酸度以及酸的种类对形成TiO2晶型的影响. 实验结果表明, 高酸度、低温度以及Cl-有助于金红石相的生成. 在相同条件下加入一定量P105 (EO37PO56EO37)三嵌段聚合物制备出一种金红石型粗糙聚集球. 扫描电子显微镜(SEM)结果表明这种粗糙聚集球直径大约350 nm, 比表面积测试(BET)及紫外漫反射测试发现粗糙球在保持较大比表面积的同时有散射效应. 此粗糙球与20 nm TiO2粒子以质量比1:4混合作为工作电极的散射层并应用于染料敏化太阳能电池, 电池效率达到7.27%, 较不加粗糙球的效率提高17%; 我们认为这是因为在保持工作电极染料吸附量基本不变的条件下粗糙球提高光散射性能.

关键词: 染料敏化太阳能电池, 二氧化钛, 金红石, 散射层

Abstract:

We prepared rutile TiO2 powders of good crystallinity by hydrolyzing a Ti(OC4H9)4 precursor at room temperature and by reprecipitation. X-ray diffraction (XRD) revealed that higher acidity, lower temperature, and specific amounts of Cl- as a medium result in rutile TiO2. This rutile TiO2 has an irregular rice-like structure. After adding the P105 (EO37PO56EO37) tri-block copolymer as a structural agent, the rutile TiO2 aggregated to form rough 350 nm spheres. These rough spheres have a greatly enhanced light harvesting efficiency and improved energy conversion efficiency in dye-sensitized solar cells. This is due to their high light scattering effect and larger surface area (109.5 m2·g-1). By adding these large rutile spheres at a mass fraction of 25% to the over-layer of a TiO2 film composed of ~20 nm TiO2 particles as light scattering centers, the energy conversion efficiency of the dye-sensitized solar cells (DSSC) was 7.27%. This is a 17% increase in conversation efficiency compared with the DSSC based on a TiO2 photoanode without these rough rutile spheres.

Key words: Dye-sensitized solar cell, TiO2, Rutile, Scattering layer