物理化学学报 >> 2011, Vol. 27 >> Issue (09): 2233-2238.doi: 10.3866/PKU.WHXB20110820

材料物理化学 上一篇    下一篇

具有超疏水表面的硅/二氧化硅层次结构薄膜

王建涛1,2, 张晓宏1, 王辉1, 欧雪梅1   

  1. 1. 中国科学院理化技术研究所, 光化学转换和功能材料重点实验室, 北京 100190;
    2. 中国科学院研究生院, 北京 100049
  • 收稿日期:2011-04-20 修回日期:2011-06-08 发布日期:2011-08-26
  • 通讯作者: 张晓宏 E-mail:xhzhang@mail.ipc.ac.cn
  • 基金资助:

    国家自然科学基金(50825304, 50972150, 20971128)资助项目

Super-Hydrophobic Silicon/Silica Hierarchical Structure Film

WANG Jian-Tao1,2, ZHANG Xiao-Hong1, WANG Hui1, OU Xue-Mei1   

  1. 1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Received:2011-04-20 Revised:2011-06-08 Published:2011-08-26
  • Contact: ZHANG Xiao-Hong E-mail:xhzhang@mail.ipc.ac.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (50825304, 50972150, 20971128).

摘要: 目前报道的硅基材料的超疏水表面主要是通过制备粗糙微观结构, 并在其表面修饰表面能相对较低的有机物两个步骤来实现的, 在户外等实际环境中应用时存在由于表面修饰有机物的降解而逐渐失去超疏水性的问题. 本工作以液态金属锡作为生长衬底, 通过化学气相沉积(CVD)法制备了一种具有超疏水性能的硅基薄膜结构. 利用扫描电镜(SEM), 透射电镜(TEM)以及X射线衍射(XRD)等手段对产物的表面形貌和组成结构进行分析发现, 薄膜表面由竖直生长的硅/二氧化硅(Si/SiO2)核壳层次结构组成. 采用Cassie 理论模型对其超疏水性能的产生提出了可能的解释. 发现构成薄膜表面的Si/SiO2层次结构单元的形貌是影响超疏水性能的重要因素. 相对于以前报道的硅基材料的超疏水表面, 这种新结构的超疏水性能不依赖于表面化学修饰, 有望拓宽硅基材料的应用环境.

关键词: 超疏水, 核壳结构, 硅纳米线, 化学气相沉积, 薄膜

Abstract: Silicon (Si)-based materials with a super-hydrophobic surface were prepared using microscale rough surfaces, which were subsequently modified by organic compounds with low surface energies. However, the super-hydrophobicity was gradually lost because of the degradation of the organic compounds when applied to an outer environment. Herein, a Si-based film with a super-hydrophobic surface fabricated by chemical vapor deposition (CVD) using a liquid metal (tin) as the growth substrate is reported. We found that the film was composed of vertical Si/SiO2 hierarchical wires upon characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Reasons for the generation of this super-hydrophobicity are given using the Cassie model. We conclude that the special Si/SiO2 hierarchical structure plays an important role in the super-hydrophobic performance of the film. Compared with the previous Si-based material with a super-hydrophobic surface, this novel structure promises to widen its area of application since its super-hydrophobicity is independent of chemical modification.

Key words: Super-hydrophobic, Core-shell structure, Silicon nanowire, Chemical vapor deposition, Film