物理化学学报 >> 2014, Vol. 30 >> Issue (12): 2256-2262.doi: 10.3866/PKU.WHXB201409302

电化学和新能源 上一篇    下一篇

SnO2/石墨纳米片复合电极及其在超级电容器中的应用

陈婵娟, 胡中爱, 胡英瑛, 李丽, 杨玉英, 安宁, 李志敏, 吴红英   

  1. 西北师范大学化学化工学院, 甘肃省高分子材料重点实验室, 生态环境相关高分子材料教育部重点实验室, 兰州 730070
  • 收稿日期:2014-06-09 修回日期:2014-09-29 发布日期:2014-11-27
  • 通讯作者: 胡中爱 E-mail:zhongai@nwnu.edu.cn
  • 基金资助:

    国家自然科学基金(20963009, 21163017)和高等学校博士学科点专项科研基金(20126203110001)资助项目

SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors

CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying   

  1. Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
  • Received:2014-06-09 Revised:2014-09-29 Published:2014-11-27
  • Contact: HU Zhong-Ai E-mail:zhongai@nwnu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20963009, 21163017) and Specialized Research Fund for the Doctoral Program of Higher Education, China (20126203110001).

摘要:

在电场的作用下对石墨棒进行电化学剥离, 使其表面形成相互平行排列, 且垂直于石墨棒基底的二维(2D)石墨纳米片阵列(GNSA). 然后通过阴极还原电沉积法制备SnO2/石墨纳米片阵列(SnO2/GNSA)复合电极.采用场发射扫描电镜(FE-SEM)、X射线衍射(XRD)和傅里叶变换红外(FT-IR)光谱对其形貌和结构进行了表征.电化学测试表明该复合电极具有优异的超电容性能, 在0.5 mol·L-1 LiNO3电解质中, 扫描速率为5 mV·s-1, 电位窗口为1.4 V时, 比电容达4015 F·m-2. 由SnO2/GNSA复合电极和相同电解质组装成的对称型超级电容器, 在扫描速率为5 mV·s-1时, 其电位窗口可增至1.8 V, 能量密度达到0.41 Wh·m-2, 循环5000 圈后其比电容仍保持为初始比电容的81%.

关键词: 超级电容器, 石墨纳米片阵列, 二氧化锡, 复合电极, 电化学性能

Abstract:

Electrochemical exfoliation of graphite rods under the action of an electric field force led to the formation of two-dimensional (2D) graphite nanosheet arrays (GNSAs) perpendicular to the surface of the graphite substrate and parallel to each other in arrangement. Subsequently, SnO2/graphite nanosheet array (SnO2/GNSA) composite electrodes were prepared by the cathodic reduction electrodeposition method. The morphology, composition, and microstructure of the samples were characterized using field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy, respectively. Electrochemical measurements showed that the composite electrodes achieved specific capacitance values as high as 4105 F·m-2 in the potential window up to 1.4 V with a scan rate of 5 mV·s-1 in 0.5 mol·L-1 LiNO3 solution. Asymmetric supercapacitor fabricated with the as-prepared SnO2/GNSAs exhibited excellent capacitive performance with energy density of 0.41 Wh·m-2 in the potential window up to 1.8 V and retention of 81% after 5000 cycles.

Key words: Supercapacitor, Graphite nanosheet array, SnO2, Composite electrode, Electrochemical performance