物理化学学报 >> 2015, Vol. 31 >> Issue (8): 1437-1451.doi: 10.3866/PKU.WHXB201506162

综述 上一篇    下一篇

锂离子电池TiO2纳米管负极材料

汪倩雯1,杜显锋1,2,*(),陈夕子1,徐友龙1,2   

  1. 1 西安交通大学,电子陶瓷与器件教育部重点实验室,西安710049
    2 西安交通大学国际电介质研究中心,西安710049
  • 收稿日期:2015-04-20 发布日期:2015-08-12
  • 通讯作者: 杜显锋 E-mail:xianfengdu@mail.xjtu.edu.cn
  • 基金资助:
    陕西省自然科学基金项目(2014JM6231);教育部留学回国人员启动基金项目及中央高校基本科研业务费专项资金(XJJ2012076)

TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries

Qian-Wen. WANG1,Xian-Feng. DU1,2,*(),Xi-Zi. CHEN1,You-Long. XU1,2   

  1. 1 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
    2 International Center of Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, P. R. China
  • Received:2015-04-20 Published:2015-08-12
  • Contact: Xian-Feng. DU E-mail:xianfengdu@mail.xjtu.edu.cn
  • Supported by:
    the Natural Science Foundation of Shaanxi Province, China(2014JM6231);Scientific Research Foundation for theReturned Overseas Chinese Scholars, State Education Ministry, and Fundamental Research Funds for the Central Universities, China(XJJ2012076)

摘要:

锂离子电池负极材料二氧化钛(TiO2)由于其零应变、环境友好和高安全性近年来得到了广泛的研究,但其较低的电子电导和离子迁移率以及较低的比容量(335 mAh·g-1)限制了其应用前景.本文梳理了一种纳米结构TiO2纳米管(TNTs)的研究历程以及最近研究进展,综述了TNTs常见的几种制备方法,即水热法、阳极氧化法和模板法及其形成机理,归纳了各种制备方法的优缺点,讨论了制备过程中各项参量对制得TNTs的影响.阐述了其晶体结构与形貌对电化学性能的影响,指出晶格取向一致、管壁厚度小,纳米管开口且同向排列的TNTs具有更好的电化学性能.同时探讨了针对该材料电导性差、比容量低而进行的包括结构设计、掺杂、复合等一系列改进措施,指出与高电导率及高比容量材料复合是一种方便有效的改进措施.最后总结了各种改性方法取得的进展及存在的不足,展望了TNTs的研究趋势和发展前景.

关键词: TiO2纳米管, 负极材料, 电化学性能, 锂离子电池

Abstract:

In recent years, TiO2 has been widely investigated as a promising anode material for lithium ion batteries because of its low volume change during the charge/discharge process, environmental benignity, and high safety. However, it suffers from poor electron transport, slow ion diffusion, and low theoretical capacity (335 mAh·g-1), which limit its practical application. In this paper, we review the development history and latest progress of TiO2 nanotubes (TNTs) as anode materials. Three typical synthesis methods of TNTs, namely, hydrothermal method, anodic oxidation, and template method, are analyzed in detail. We explain the formation mechanism, compare the advantages and disadvantages of each method, and identify the factors influencing the formation of TNTs. We also carefully analyze the morphology and crystallography of TNTs and describe how they influence the electrochemical performance. It is pointed out that c-axis oriented, arrayed, unsealed TNTs with a wall thickness less than 5 nm show better electrochemical performance. Various approaches for improving the electrochemical performance of TNTs are summarized, including preparation of threedimensional (3D) structured electrodes, doping, coating, and synthesis of composites. Among these approaches, compositing with materials that have high capacity and high conductivity has proven to be effective, convenient, and controllable. The achievements and the problems associated with each approach are summarized, and the possible research directions and prospects of TNTs as anode materials for Li-ion batteries in the future are discussed.

Key words: TiO2 nanotube, Anode material, Electrochemical performance, Lithium ion battery