物理化学学报 >> 2017, Vol. 33 >> Issue (2): 295-304.doi: 10.3866/PKU.WHXB201610172

综述 上一篇    下一篇

固溶体光催化材料的研究进展

荆涛,戴瑛*()   

  • 收稿日期:2016-08-09 发布日期:2017-01-12
  • 通讯作者: 戴瑛 E-mail:daiy60@sina.com
  • 作者简介:荆涛,1981年生。2010年毕业于贵州大学理学院,获得硕士学位。2012年至今就读于山东大学物理学院,攻读博士学位。主要从事光催化材料电子结构及其相关性质的研究|戴瑛,1962年生。1998年博士毕业于山东大学。现任山东大学物理学院教授,博士生导师。2015年被评为泰山学者特聘专家。主要从事半导体材料纳米光电性质和光催化性质及其应用的研究. E-mail:daiy60@sina.com;Tel:+86-531-88365569
  • 基金资助:
    国家重点基础研究发展规划(973)(2013CB632401);国家自然科学基金(21333006,11374190);山东省泰山学者计划资助项目

Development of Solid Solution Photocatalytic Materials

Tao JING,Ying DAI*()   

  • Received:2016-08-09 Published:2017-01-12
  • Contact: Ying DAI E-mail:daiy60@sina.com
  • Supported by:
    The project was supported by the National Key Basic Research Program of China (973)(2013CB632401);National Natural Science Foundation of China(21333006,11374190);Taishan Scholar Program of Shandong Province, China

摘要:

掺杂能够实现传统宽带隙半导体光催化材料的可见光响应,但引入的局域杂质能级易成为载流子的复合中心,降低材料的光催化活性。固溶体方法可以实现带隙和带边位置的精确调控,使材料的光吸收和氧化还原电位达到最佳平衡,是改善其光催化性能的有效方法。本文结合我们课题组近些年来的研究,从固溶体方法对半导体光催化材料带隙和带边位置的调控以及对载流子分离和迁移等性质的影响出发,概述了近年来该领域的最新研究进展,总结了固溶体方法在发展中所面临的主要问题,并对其发展趋势进行展望。

关键词: 光催化材料, 掺杂, 固溶体, 电子结构, 载流子分离

Abstract:

Traditional semiconductor photocatalysts with a wide band gap can achieve visible light responses through element doping. However, the localized levels introduced by impurities may act as recombination centers of charge carriers, which may lower the photocatalytic activity of the doped materials. The solid solution method can realize precise regulation of the band gap and band edge positions of materials to obtain an optimal balance between their optical absorption and redox potentials. The solid solution method is therefore an effective approach to improve the photocatalytic performance of semiconductor materials. In the present review, considering our recent research, we briefly discuss the latest progress of the solid solution method to tune the band gap and band edge positions of photocatalytic materials as well as examining its influence on carrier separation and migration properties. Finally, challenges and prospects for further development of this method are presented.

Key words: Photocatalytic material, Doping, Solid solution, Electronic structure, Carrier separation