物理化学学报 >> 2018, Vol. 34 >> Issue (1): 36-48.doi: 10.3866/PKU.WHXB201706304

综述 上一篇    下一篇

ZnO电极修饰层在钙钛矿太阳能电池中的应用

许利刚1,邱伟1,陈润锋1,*(),张宏梅1,黄维2,*()   

  1. 1 南京邮电大学信息材料与纳米技术研究院,南京210023
    2 南京工业大学先进材料研究院,南京211816
  • 收稿日期:2017-05-18 发布日期:2017-11-01
  • 通讯作者: 陈润锋,黄维 E-mail:iamrfchen@njupt.edu.cn;iamwhuang@njtech.edu.cn
  • 作者简介:陈润锋,1977年生。1999年本科毕业于同济大学高分子材料科学系,2002年硕士毕业于同济大学高分子材料科学系,2006年博士毕业于复旦大学物理化学系。现为南京邮电大学材料学院博士生导师,教授。研究方向有机能源材料与器件。主持国家自然科学基金3项|黄维,1963年生。1983年本科毕业于北京大学化学系,1988年硕士毕业于北京大学物理化学系,1992年博士毕业于北京大学物理化学系。现南京工业大学先进材料研究院博士生导师,教授。主要研究方向为有机光电子器件。主持国家自然科学基金5项
  • 基金资助:
    国家重点基础研究发展规划项目(2015CB932203);国家自然科学基金(61604079);国家自然科学基金(21674049);博士后创新人才计划(BX201600076);中国博士后科学基金(2017M611879);南京邮电大学科研启动基金(NY215015)

Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells

Li-Gang XU1,Wei QIU1,Run-Feng CHEN1,*(),Hong-Mei ZHANG1,Wei HUANG2,*()   

  1. 1 Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, P. R. China
    2 Institue of Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
  • Received:2017-05-18 Published:2017-11-01
  • Contact: Run-Feng CHEN,Wei HUANG E-mail:iamrfchen@njupt.edu.cn;iamwhuang@njtech.edu.cn
  • Supported by:
    the National Key Basic Research Program of China (973)(2015CB932203);National Natural Science Foundation of China(61604079);National Natural Science Foundation of China(21674049);the Initiative Postdocs Supporting Program, China(BX201600076);China Postdoctoral Science Foundation(2017M611879);Scientific Starting Fund from Nanjing University of Posts and Telecommunications, China(NY215015)

摘要:

ZnO电极修饰层具有高电子迁移率、高透光率、可低温制备且环境友好等优点在钙钛矿太阳能电池上获得了广泛应用。本文针对传统电极修饰层需要高温退火、透光率较低、制备过程繁琐,不利于高性能柔性钙钛矿电池器件制备等问题,系统综述了以ZnO材料作为电极修饰层的制备方法,综合分析了ZnO构筑的电极修饰层形貌、厚度、掺杂及复合对钙钛矿太阳能电池性能(如开路电压、电流密度、填充因子、光电转换效率等)的影响,展望了ZnO电极修饰层材料的未来发展趋势与其在钙钛矿太阳能电池中的应用前景。

关键词: 钙钛矿电池, ZnO电极修饰层, 掺杂, 复合, 光电转换效率

Abstract:

ZnO has attracted extensive research in perovskite solar cells because of its high electron mobility, spectacular optical transparency, low-temperature processing, and ease of synthesis. Traditional electrode buffer layers used in perovskite solar cells have shown some drawbacks, such as high-temperature treatment, low transmittance, and complex fabrication procedures, which might not be fit for the further development of high-performance flexible perovskite solar cells. Here, we intend to give a systematic introduction to the fabrication and functions of ZnO electrode buffer layers (sol-gel method, pre-fabricated ZnO nanoparticle suspension, atomic layer deposition, spray pyrolysis, electrodeposition, chemical bath deposition, radio-frequency sputtering, metal organic chemical vapor deposition, and magnetron sputtering etc.). Particular attentions were paid to the understanding of the structure-property relations between the thickness, morphology, doping, and composition of ZnO electrode buffer layers and the performance of perovskite solar cells (open circuit voltage, current density, fill factor, power conversion efficiency, etc.). A perspective on the future development of ZnO electrode buffer layers and their applications in perovskite solar cells were also discussed in this review.

Key words: Perovskite solar cells, ZnO electrode buffer layer, Doping, Composition, Photoelectric conversion efficiency