物理化学学报 >> 2018, Vol. 34 >> Issue (6): 581-597.doi: 10.3866/PKU.WHXB201711222

综述 上一篇    下一篇

水系钠离子电池电极材料研究进展

刘双,邵涟漪,张雪静,陶占良*(),陈军   

  • 收稿日期:2017-10-27 发布日期:2018-03-20
  • 通讯作者: 陶占良 E-mail:taozhl@nankai.edu.cn
  • 作者简介:陶占良,1972年生。2005年博士毕业于南开大学化学学院。现为南开大学化学学院教授、硕士研究生导师。主要从事高能电池电极材料、能源电化学等电化学领域相关的科研工作
  • 基金资助:
    国家重点研发计划(2016YFB0901500);国家重点研发计划(2016YFB0101201);国家自然科学基金(51771094)

Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries

Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO*(),Jun CHEN   

  • Received:2017-10-27 Published:2018-03-20
  • Contact: Zhanliang TAO E-mail:taozhl@nankai.edu.cn
  • Supported by:
    the National Key R & D Program of China(2016YFB0901500);the National Key R & D Program of China(2016YFB0101201);the National Natural Science Foundation of China(51771094)

摘要:

随着太阳能、风能等可再生能源发电并网普及应用和智能电网建设,储能技术成为能源优化利用的核心技术之一。水系钠离子电池具有资源丰富、价格低廉等优势,作为未来电网储能的重要选择而成为近年来电化学储能技术前沿的研究热点。由于受到水的热力学电化学窗口限制及嵌钠反应的特殊性(例如溶液的pH值、氧的溶解等),以及容量、电化学电位、适应性及催化效应等,电极材料选择面临挑战,进而影响水系钠离子电池的应用。因此,电极材料成为水系钠离子电池的研究重点。本文简要概括了水系钠离子电池的特点,并对氧化物、聚阴离子化合物、普鲁士蓝类似物和有机物等电极材料体系的最新研究进展进行了总结,并概括了将来的发展方向,为推动水系钠离子电池的发展和能源优化研究奠定了基础。

关键词: 水系钠离子电池, 正极材料, 负极材料, 电解液

Abstract:

With solar, wind, and other types of renewable energy incorporated into electrical grids and with the construction of smart grids, energy storage technology has become essential to optimize energy utilization. Due primarily to its abundance and low cost, aqueous rechargeable sodium-ion batteries (ARSBs) have received increasing attention in the field of electrochemical energy storage technology, and represent a promising alternative to energy storage in future power grids. However, because of the limitations of the thermodynamics of electrochemical processes in water, reactions in aqueous solution are more complicated compared to an organic system. Many parameters must be taken into account in an aqueous system, such as electrolyte concentration, dissolved oxygen content, and pH. As a result, it is challenging to select an appropriate electrode material, whose capacity, electrochemical potential, adaptability, and even catalytic effect may seriously affect the battery performance and hamper its application. Therefore, the development of advanced electrode materials, which can suppress side reactions of the battery and have good electrochemical performance, has become the focus of ARSB research. This paper briefly discusses the characteristics of ARSBs and summarizes the latest research progress in the development of electrode materials, including oxides, polyanionic compounds, Prussian blue analogues, and organics. This review also discusses the challenges remaining in the development of ARSBs, and suggests several ways to solve them, such as by using multivalent ions, hybridized electrolytes, etc., and speculates about future research directions. The studies and concepts discussed herein will advance the development of ARSBs and promote the optimization of energy utilization.

Key words: Aqueous sodium ion battery, Cathode material, Anode material, Electrolyte