物理化学学报 >> 2020, Vol. 36 >> Issue (7): 1907011.doi: 10.3866/PKU.WHXB201907011
所属专题: 纳米复合材料
刘冬梅,陈秀梅,袁泽,闾敏,殷丽莎*(),谢小吉*(),黄岭
收稿日期:
2019-07-01
录用日期:
2019-07-26
发布日期:
2020-03-21
通讯作者:
殷丽莎,谢小吉
E-mail:iamlsyin@njtech.edu.cn;iamxjxie@njtech.edu.cn
基金资助:
Dongmei Liu,Xiumei Chen,Ze Yuan,Min Lu,Lisha Yin*(),Xiaoji Xie*(),Ling Huang
Received:
2019-07-01
Accepted:
2019-07-26
Published:
2020-03-21
Contact:
Lisha Yin,Xiaoji Xie
E-mail:iamlsyin@njtech.edu.cn;iamxjxie@njtech.edu.cn
Supported by:
摘要:
制备如异质核-壳结构等不同结构的镧系离子掺杂的上转换纳米材料对上转换纳米材料的基本性质研究及应用至关重要。在本工作中,我们采用简单的共沉淀方法在NaGdF4:Yb/Tm上转换纳米粒子表面包覆了无定形的Y(OH)CO3壳层。通过透射电子显微镜,X射线衍射,能量色散X射线荧光光谱等物理表征手段研究了所得纳米粒子的结构和形貌,结果表明Y(OH)CO3壳层可以在300 ℃附近转化形成YOF,形成异质核-壳结构。同时,初步研究结果显示该方法也可拓展用于其他无定形壳层的包覆及蛋黄-蛋壳结构纳米粒子的制备。这些结果表明这种方法在制备不同结构的上转换纳米材料方面有良好的应用前景。
刘冬梅,陈秀梅,袁泽,闾敏,殷丽莎,谢小吉,黄岭. 上转换纳米粒子的Y(OH)CO3壳层包覆及壳层转化[J]. 物理化学学报, 2020, 36(7), 1907011. doi: 10.3866/PKU.WHXB201907011
Dongmei Liu,Xiumei Chen,Ze Yuan,Min Lu,Lisha Yin,Xiaoji Xie,Ling Huang. Coating and Transforming the Y(OH)CO3 Shell on Upconversion Nanoparticles[J]. Acta Physico-Chimica Sinica 2020, 36(7), 1907011. doi: 10.3866/PKU.WHXB201907011
Fig 1
(a) TEM image of the as-synthesized NaGdF4:Yb/Tm (49/1 mol%) upconversion nanoparticles with oleic acid ligands. (b) High resolution TEM image of a NaGdF4:Yb/Tm nanoparticle shown in (a) (upper panel) and corresponding Fourier transform diffraction pattern (lower panel). (c, d) TEM and dark-field STEM images of the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles, respectively. (e–i) Corresponding elemental mapping of the core-shell nanoparticles shown in (d). Scale bars are 50 nm for panels (d–i). Note that the element maps of (e, h) are overlapped with the STEM image for comparison. (j) XRD patterns of the oleic acid capped NaGdF4:Yb/Tm nanoparticles, Y(OH)CO3, and NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles. Note that the diffraction pattern at the bottom of (j) is the literature reference for hexagonal NaGdF4 crystals (JCPDS 27-0699)."
Fig 2
Upconversion luminescence spectrum of the powder of NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles under a 980 nm laser excitation. Note that the peak marked by asterisk at ~490 nm should be due to the scattering of excitation laser. The insets in the figure are photos of the core-shell nanoparticle powder under daylight (left) and the excitation of a 980 nm laser (right)."
Fig 3
(a) Thermogravimetric analysis curves of Y(OH)CO3, ligand-free NaGdF4:Yb/Tm and NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles. (b–d) Dark-field STEM images of the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles after heated at (b, d) 300 and (c) 350 ℃, respectively. (e–i) Corresponding elemental mapping of the nanoparticles shown in (d). Scale bars are 50 nm for panels (d–i). Note that the element maps of (e, h) are overlapped with the STEM image for comparison."
Fig 4
XRD patterns of the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles after heated at 300 and 350 ℃ for 3 h. Note that the diffraction patterns at the top and bottom are the literature references for hexagonal NaGdF4 (JCPDS 27-0699) and YOF (JCPDS 25-1012) crystals, respectively. (b, c) High resolution TEM images (left panel) and corresponding Fourier transform diffraction patterns (right panel) of the shell layer of the core-shell nanoparticles after treated at (b) 300 ℃ and (c) 350 ℃ for 3 h, respectively."
1 |
Dong H. ; Du S. R. ; Zheng X. Y. ; Lyu G. M. ; Sun L. D. ; Li L. D. ; Zhang P. Z. ; Zhang C. ; Yan C. H Chem. Rev. 2015, 115, 10725.
doi: 10.1021/acs.chemrev.5b00091 |
2 |
Chen S. ; Weitemier A. Z. ; Zeng X. ; He L. ; Wang X. ; Tao Y. ; Huang A. J. Y. ; Hashimotodani Y. ; Kano M. ; Iwasaki H. ; et al Science 2018, 359, 679.
doi: 10.1126/science.aaq1144 |
3 |
Feng Y. ; Yang C. ; Fang W. ; Huang B. ; Shao Q. ; Huang X Nano Energy 2019, 58, 234.
doi: 10.1016/j.nanoen.2019.01.036 |
4 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. Y. ; Su D. ; et al Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
5 |
Yuan Z. ; Zhang L. ; Li S. ; Zhang W. ; Lu M. ; Pan Y. ; Xie X. ; Huang L. ; Huang W J. Am. Chem. Soc. 2018, 140, 15507.
doi: 10.1021/jacs.8b10122 |
6 |
Fan Y. ; Liu L. ; Zhang F Nano Today 2019, 25, 68.
doi: 10.1016/j.nantod.2019.02.009 |
7 |
Chaudhuri G. R. ; Paria S Chem. Rev. 2012, 112, 2373.
doi: 10.1021/cr100449n |
8 |
Hudry D. ; Howard I. A. ; Popescu R. ; Gerthsen D. ; Richards B. S Adv. Mater. 2019, 31, 1900623.
doi: 10.1002/adma.201900623 |
9 |
Chen G. ; Ågren H. ; Ohulchanskyy T. Y. ; Prasad P. N Chem. Soc. Rev. 2015, 44, 1680.
doi: 10.1039/C4CS00170B |
10 |
Chen X. ; Peng D. ; Ju Q. ; Wang F Chem. Soc. Rev. 2015, 44, 1318.
doi: 10.1039/C4CS00151F |
11 |
Yu S. ; Tu D. ; Lian W. ; Xu J. ; Chen X Sci. China Mater. 2019, 62, 1071.
doi: 10.1007/s40843-019-9414-4 |
12 |
Zhou B. ; Shi B. ; Jin D. ; Liu X Nat. Nanotechnol. 2015, 10, 924.
doi: 10.1038/nnano.2015.251 |
13 |
Yang D. ; Ma P. ; Hou Z. ; Cheng Z. ; Li C. ; Lin J Chem. Soc. Rev. 2015, 44, 1416.
doi: 10.1039/C4CS00155A |
14 |
Lyu L. ; Cheong H. ; Ai X. ; Zhang W. ; Li J. ; Yang H. H. ; Lin J. ; Xing B NPG Asia Mater. 2018, 10, 685.
doi: 10.1038/s41427-018-0065-y |
15 |
Zhang Z. ; Shikha S. ; Liu J. ; Zhang J. ; Mei Q. ; Zhang Y Anal. Chem. 2019, 91, 548.
doi: 10.1021/acs.analchem.8b04049 |
16 |
Hirsh D. A. ; Johnson N. J. J. ; van Veggel F. C. J. M. ; Schurko R. W Chem. Mater. 2015, 27, 6495.
doi: 10.1021/acs.chemmater.5b01986 |
17 |
Bai H. R. ; Fan H. H. ; Zhang X. B. ; Chen Z. ; Tan W. H Acta Phys. -Chim. Sin. 2018, 34, 348.
doi: 10.3866/PKU.WHXB201708311 |
白华荣; 范换换; 张晓兵; 陈卓; 谭蔚泓. 物理化学学报, 2018, 34, 348.
doi: 10.3866/PKU.WHXB201708311 |
|
18 |
Arboleda C. ; He S. ; Stubelius A. ; Johnson N. J. J. ; Almutairi A Chem. Mater. 2019, 31, 3103.
doi: 10.1021/acs.chemmater.8b04057 |
19 |
Zhao H. ; Xia J. ; Yin D. ; Luo M. ; Yan C. ; Du Y Coord. Chem. Rev. 2019, 390, 32.
doi: 10.1016/j.ccr.2019.03.011 |
20 |
Cui C. ; Tou M. ; Li M. ; Luo Z. ; Xiao L. ; Bai S. ; Li Z Inorg. Chem. 2017, 56, 2328.
doi: 10.1021/acs.inorgchem.6b03079 |
21 |
Tang Y. ; Di W. ; Zhai X. ; Yang R. ; Qin W ACS Catal. 2013, 3, 405.
doi: 10.1021/cs300808r |
22 |
Li Y. ; Di Z. ; Gao J. ; Cheng P. ; Di C. ; Zhang G. ; Liu B. ; Shi X. ; Sun L. D. ; Li L. ; et al J. Am. Chem. Soc. 2017, 139, 13804.
doi: 10.1021/jacs.7b07302 |
23 |
Xu J. ; Xu L. ; Wang C. ; Yang R. ; Zhuang Q. ; Han X. ; Dong Z. ; Zhu W. ; Peng R. ; Liu Z ACS Nano 2017, 11, 4463.
doi: 10.1021/acsnano.7b00715 |
24 |
Feng L. ; He F. ; Dai Y. ; Gai S. ; Zhong C. ; Li C. ; Yang P Biomater. Sci. 2017, 5, 2456.
doi: 10.1039/C7BM00798A |
25 |
Chen J. ; Zhang D. ; Zou Y. ; Wang Z. ; Hao M. ; Zheng M. ; Xue X. ; Pan X. ; Lu Y. ; Wang J. ; et al J. Mater. Chem. B 2018, 6, 7862.
doi: 10.1039/C8TB02213E |
26 |
Dong H. ; Sun L. D. ; Li L. D. ; Si R. ; Liu R. ; Yan C. H J. Am. Chem. Soc. 2017, 139, 18492.
doi: 10.1021/jacs.7b11836 |
27 |
Su Q. ; Feng W. ; Yang D. ; Li F Acc. Chem. Res. 2017, 50, 32.
doi: 10.1021/acs.accounts.6b00382 |
28 |
Zuo J. ; Sun D. ; Tu L. ; Wu Y. ; Cao Y. ; Xue B. ; Zhang Y. ; Chang Y. ; Liu X. ; Kong X. ; et al Angew. Chem. Int. Ed. 2018, 57, 3054.
doi: 10.1002/anie.201711606 |
29 |
Lay A. ; Siefe C. ; Fischer S. ; Mehlenbacher R. D. ; Ke F. ; Mao W. L. ; Alivisatos A. P. ; Goodman M. B. ; Dionne J. A Nano Lett. 2018, 18, 4454.
doi: 10.1021/acs.nanolett.8b01535 |
30 |
Yang G. ; Yang D. ; Yang P. ; Lv R. ; Li C. ; Zhong C. ; He F. ; Gai S. ; Lin J Chem. Mater. 2015, 27, 7957.
doi: 10.1021/acs.chemmater.5b03136 |
31 |
Tou M. ; Luo Z. ; Bai S. ; Liu F. ; Chai Q. ; Li S. ; Li Z Mater. Sci. Eng. C 2017, 70, 1141.
doi: 10.1016/j.msec.2016.03.038 |
32 |
Zhang F. ; Braun G. B. ; Pallaoro A. ; Zhang Y. ; Shi Y. ; Cui D. ; Moskovits M. ; Zhao D. ; Stucky G. D Nano Lett. 2012, 12, 61.
doi: 10.1021/nl202949y |
33 |
Wang W. ; Zhao M. ; Zhang C. ; Qian H Chem. Rec. 2019, 19
doi: 10.1002/tcr.201900006 |
34 |
Chen G. ; Qiu H. ; Prasad P. N. ; Chen X Chem. Rev. 2014, 114, 5161.
doi: 10.1021/cr400425h |
35 |
Liu K. C. ; Zhang Z. Y. ; Shan C. X. ; Feng Z. Q. ; Li J. S. ; Song C. L. ; Bao Y. N. ; Qi X. H. ; Dong B Light Sci. Appl. 2016, 5, e16136.
doi: 10.1038/lsa.2016.136 |
36 |
Wang Y. ; Yang G. ; Wang Y. ; Zhao Y. ; Jiang H. ; Han Y. ; Yang P Nanoscale 2017, 9, 4759.
doi: 10.1039/C6NR09030C |
37 |
Wang F. ; Liu X Acc. Chem. Res. 2014, 47, 1378.
doi: 10.1021/ar5000067 |
38 |
Cheng X. ; Pan Y. ; Yuan Z. ; Wang X. ; Su W. ; Yin L. ; Xie X. ; Huang L Adv. Funct. Mater. 2018, 28, 1800208.
doi: 10.1002/adfm.201800208 |
39 |
Yan C. ; Dadvand A. ; Rosei F. ; Perepichka D. F J. Am. Chem. Soc. 2010, 132, 8868.
doi: 10.1021/ja103743t |
40 |
Zhang F. ; Wang W. ; Cong H. ; Luo L. ; Zha Z. ; Qian H Part. Part. Syst. Charact. 2017, 34, 1600222.
doi: 10.1002/ppsc.201600222 |
41 |
Ling X. ; Shi R. ; Zhang J. ; Liu D. ; Weng M. ; Zhang C. ; Lu M. ; Xie X. ; Huang L. ; Huang W ACS Sens. 2018, 3, 1683.
doi: 10.1021/acssensors.8b00368 |
42 |
Xu Z. ; Ma P. ; Li C. ; Hou Z. ; Zhai X. ; Huang S. ; Lin J Biomaterials 2011, 32, 4161.
doi: 10.1016/j.biomaterials.2011.02.026 |
43 |
Lv C. ; Di W. ; Liu Z. ; Zheng K. ; Qin W Dalton Trans. 2014, 43, 3681.
doi: 10.1039/c3dt53213e |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 冀连连, 王现鹏, 张莹莹, 申学礼, 薛娣, 王璐, 王滋, 王文冲, 黄丽珍, 迟力峰. 有机-有机界面效应的原位及非原位研究[J]. 物理化学学报, 2024, 40(1): 2304002 - . |
[3] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[4] | 沈姗姗, 刘晓晖, 郭勇, 王艳芹. Fe的原位掺杂对Pt/Silicalite-1催化丙烷脱氢反应性能的提升作用[J]. 物理化学学报, 2023, 39(7): 2209043 -0 . |
[5] | 鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 2211057 -0 . |
[6] | 王晓愚, 程阳, 薛国栋, 周子琦, 赵孟泽, 马超杰, 谢瑾, 姚光杰, 洪浩, 周旭, 刘开辉, 刘忠范. 基于硒化镓纳米片填充的空芯光纤超高二次谐波增强[J]. 物理化学学报, 2023, 39(7): 2212028 -0 . |
[7] | 刘真, 孟祥福, 古万苗, 查珺, 闫楠, 尤青, 夏楠, 王辉, 伍志鲲. 组合掺杂引入新型、多种镉配位方式增强金纳米团簇的电催化性能[J]. 物理化学学报, 2023, 39(12): 2212064 - . |
[8] | 汪婕, 刘贵高, 韵勤柏, 周希琛, 刘效治, 陈也, 程洪飞, 葛一瑶, 黄京韬, 胡兆宁, 陈博, 范战西, 谷林, 张华. 在4H晶相Au纳米带上外延生长非常规晶相4H-Pd基合金纳米结构用于高效甲醇电催化氧化[J]. 物理化学学报, 2023, 39(10): 2305034 - . |
[9] | 邵长香, 曲良体. 水的气-液相转变获取电能研究进展[J]. 物理化学学报, 2023, 39(10): 2306004 - . |
[10] | 庄必浩, 靳子骢, 田德华, 朱遂意, 曾琳茜, 范建东, 娄在祝, 李闻哲. 新型(4-HBA)SbX5∙H2O类钙钛矿单晶及其卤素结构对发光特性的调控[J]. 物理化学学报, 2023, 39(1): 2209007 -0 . |
[11] | 何文倩, 邸亚, 姜南, 刘遵峰, 陈永胜. 石墨烯诱导水凝胶成核的高强韧人造蛛丝[J]. 物理化学学报, 2022, 38(9): 2204059 - . |
[12] | 王成, 张弛, 黎瑞锋, 陈琪, 钱磊, 陈立桅. 量子点发光二极管中电荷累积行为[J]. 物理化学学报, 2022, 38(8): 2104030 - . |
[13] | 沈荣晨, 郝磊, 陈晴, 郑巧清, 张鹏, 李鑫. 高分散Co0.2Ni1.6Fe0.2P助催化剂改性P掺杂g-C3N4纳米片高效光催化析氢的研究[J]. 物理化学学报, 2022, 38(7): 2110014 - . |
[14] | 杨越, 朱加伟, 王鹏彦, 刘海咪, 曾炜豪, 陈磊, 陈志祥, 木士春. 镶嵌于NH2-MIL-125 (Ti)衍生氮掺多孔碳中的花状超细纳米TiO2作为高活性和稳定性的锂离子电池负极材料[J]. 物理化学学报, 2022, 38(6): 2106002 - . |
[15] | 刘影, 刘晓放, 夏林, 黄超杰, 吴兆萱, 王慧, 孙予罕. 以类水滑石为前驱体的Cu/ZnO/Al2O3催化剂用于COx加氢合成甲醇:CO在反应混合物中的作用[J]. 物理化学学报, 2022, 38(3): 2002017 - . |
|