物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1907053.doi: 10.3866/PKU.WHXB201907053
所属专题: 庆祝唐有祺院士百岁华诞专刊
收稿日期:
2019-07-19
录用日期:
2019-09-10
发布日期:
2019-09-24
通讯作者:
张长胜,来鲁华
E-mail:changshengzhang@pku.edu.cn;lhlai@pku.edu.cn
作者简介:
张长胜副研究员,2005年本科毕业于哈尔滨工业大学理学院,2011年博士毕业于北京大学化学与分子工程学院。2014–2018年在美国得州大学奥斯汀分校做博士后研究。现任北京大学化学学院物理化学研究所副研究员。主要研究方向包括蛋白质相互作用与聚集机理研究、功能蛋白质计算设计、新一代生物分子力场的开发|来鲁华教授,1984年本科毕业于北京大学化学系,1989年获北京大学化学系物理化学博士。现任北京大学化学与分子工程学院物理化学研究所教授。主要研究方向包括基于结构与系统生物学的药物设计方法与应用、蛋白质设计、蛋白质别构及无序蛋白质调控、肿瘤细胞代谢和炎症网络调控机制研究等
基金资助:
Changsheng Zhang1,*(),Luhua Lai1,2,*()
Received:
2019-07-19
Accepted:
2019-09-10
Published:
2019-09-24
Contact:
Changsheng Zhang,Luhua Lai
E-mail:changshengzhang@pku.edu.cn;lhlai@pku.edu.cn
Supported by:
摘要:
近年来,有关生物分子通过液-液相分离机制进行组织定位、功能调控的研究发展迅速。相分离产生的聚集体在众多细胞活动事件中发挥了关键作用。这些聚集体的生物功能是以相分离的物理化学性质为基础的。本文将从相分离聚集体的基本性质、相图、微观结构,相分离的统计热力学、实验和分子模拟研究等方面阐释相分离物理化学机制研究相关进展。对于生物分子相分离的重要功能体系进行了列举和归纳,收集了相分离研究的模式体系,探讨了生物分子相分离的生物功能同物理化学机制之间的关系,总结了生物分子相分离的调控机制和调控分子的设计方法,并对生物分子相分离物理化学机制研究的未来发展方向进行了展望。
张长胜,来鲁华. 生物分子液-液相分离的物理化学机制[J]. 物理化学学报, 2020, 36(1), 1907053. doi: 10.3866/PKU.WHXB201907053
Changsheng Zhang,Luhua Lai. Physiochemical Mechanisms of Biomolecular Liquid-Liquid Phase Separation[J]. Acta Physico-Chimica Sinica 2020, 36(1), 1907053. doi: 10.3866/PKU.WHXB201907053
表1
研究生物分子相分离物理化学机制的模式实验体系"
No. | Description | The objective sequence | Major research results | Ref. |
a | RNA molecular with repetitive sequences | 47 x CUG,47 x CAG | CAG-repeat RNAs phase-separate in cells. With Mg2+ in solution,these two repeat sequence RNA initially phase-separate into liquid-like droplet and then rapidly become cross-linked into gels. | |
b | Nck + N-WASP | The linker L1 of Nck, between the first two SH3 domains | Mutations of L1 significantly affects the occurrence of phase separation. The concentrated distribution of positive charge residues on N-terminal, as well as the weak interactions with the second SH3 domain, are the major driving force for the L1 promoted phase separation. | |
c | (P-Xn-G)m | With different X and m value | The average hydrophobic index of X can be used to judge whether the protein has lower or upper critical solution temperature. The larger the m value, the stronger the tendency of phase separation. The sequence with upper critical solution temperature can be predicted by the parameters concluded from experiments. | |
d | VRN1 + DNA | The VRN1 linker between the B3 domains | In the model system, the linker was simulated by repetitive Pro-Ser sequences. The introduction of an alkaline residue block and/or an acidic residue block is very important for the morphology of phase separation aggregates. | |
e | PR30 + poly-rA (or poly-rU, poly-rC) | Pro-Arg repetitive sequence with homopolymeric RNA | Condensates formed with pol-rA were more viscous than those formed by poly-rC and poly-rU. The stronger interaction between arginine and adenosine makes poly-rA phase separated droplets have higher density and viscosity. Mixing RNA species generates complex multilayered condensates. | |
f | RP3/SR8 + polyU | RP3/SR8 contain RNA binding motifs RGG/RG/SR | The polyU RNA can modulate the phase behavior of the proteins. When the RNA concentration is lower, increasing the RNA concentration leads to droplet assembly by complex coacervation, and after the RNA concentration reaches to a value, increasing RNA concentration triggers a protein charge inversion, which promotes disassembly. | |
g | polyK + single/double strand nucleic acid | polyK-ss/ds RNA/DNA | PolyK with single strand nucleic acids phase separate into liquid-like droplets, and PolyK with double strand nucleic acids tends to phase separate into gel, apparently because of the difference of charge density. The phase separation morphology is also affected by ionic strength and temperature. | |
h | (PRM)n + (SH3)m | Model system for multivalent interaction | The greater the number of repeat domains, the lower the critical concentration of separation phase. The number of repeat domains also affects the tendency of droplet transition to gel state. | |
i | polyE + poly(G-K) | poly(G-K) with different charge patterns | The poly(G-K) protein with more concentrated charge pattern has an increased critical salt concentration for phase separation. Ionic entropy change is the driving force for this phase transition system. |
表2
细胞活动过程中生物分子相分离的重要作用与机制"
No. | Description | Scaffold molecular; assistant molecules promoting LLPS | The recruited functional client molecules | Regulation of the formation and disassembly of the aggregates | Biological functions | Ref. |
a | P granule (fertilized egg cell of elegans) | MEG-3/MEG-4 protein; RNA | Endonuclease (PGL-1 or 3), RNA helicase (GLH, LAF) | Disassemble: phosphorylation by kinase MBK-2/DYRK; assemble: dephosphorylation by phosphatase PP2A | Polarization and asymmetric division of fertilized eggs into somatic and germ cells | |
b | PGL granule (somatic cells of elegans in development) | PGL-1/PGL-3 (RGG domain; RNA, SEPA-1 | EPG-2 (promote the solidification of the droplets), Atg8 (initiate autophagic degradation) | Promotion: phosphorylation by kinase mTORC (response to high temperature); inhibition: arginine methylation by EPG11 | Autophagic degradation of PGL in somatic cells; response to high temperature | |
c | Synapsin droplets (synapses) | Synapsin 1(C terminal IDP domain) | Synaptic vesicles (DOPE lipid), SH3 domain-containing proteins (such as Grb2) | phosphorylation by kinase CaMKII results in rapidly condensates disassemble and the release of the vesicles | Control the accumulation of synaptic vesicles and their release under stimulations | |
d | Postsynaptic densities | PSD-95 (PSG domain, ligand induced dimerization) + SynGAP (Coiled-coil-PBM domain, trimer) | Disassemble: phosphorylation by kinase SynGAP | Synaptic plasticity in the nervous system, which is the mechanism of long-term potentiation/depression processes | ||
e | cGAS foci (HeLa cell) | cGAS (cyclic GMP-AMP synthase N-terminal IDP domain) + dsDNA | The substrate of cGAS: GTP,ATP | Zn2+ promotes the phase separation process | dsDNA-induced innate immune signaling | |
f | Stress granule (yeast cell, Hela cell) | Poly-A binding protein (proline-rich domain), Sup35 (prion domain) | mTORC1, DYRK3 N-terminal domain | High temperature or low pH stress drives phase separation; polyA RNA inhibits phase separation; DYRK3 regulates stress granule dissolution | Reversible protective response mechanism under stress. | |
g | Sec body (Drosophila cell, between ER and Golgi apparatus) | Sec16 | COPII coated vesicles | Mono-ADP-ribosylation of Sec16 by PARP16 promotes phase separation | Protein secretion inhibition, a protective response mechanism under environmental stress such as starvation | |
h | DNA repair compartment | 53BP1 | gH2AX + MDC1 (mediator of DNA damage checkpoint protein), tumor suppressor p53 | Protect the damaged DNA fragment; recruit repair protein for DNA damage repair | ||
i | Nuclear condensate | Nucleoprotein IDP domain, such as BRD4, TAF15 or FUS | genomic loci specifically binding with the scaffold nucleoproteins; | Restructure the genome; physically pulling in targeted genomic loci while pushing out non-targeted regions. | ||
j | Heterochromatin foci (in cell nucleus) | HP1α (dimer); DNA | chromatin | Phosphorylated HP1α forms larger and more nuclear puncta; Sgo/LBR promotes/inhibits phase separation | Gene silencing in heterochromatin | |
k | Nuclear speckle (mammalian cells) | Cyclin T1 (histidine-rich domain), DYRK1A (histidine-rich domain) | RNA polymerase Ⅱ C terminal domain, CDK9 | CDK7 or TFIIH pre-phosphorylated RNA polymerase Ⅱ promotes phase separation | C-terminal hyper-phosphorylation of RNA polymerase Ⅱ | |
l | Coactivator Puncta | MED1 (intrinsically disordered regions) | RNA polymerase Ⅱ; transcriptional coactivator: BRD4, OCT4, ER | Transcriptional regulation of the enhancer gene, bring two genomic region closer | ||
m | Splicing speckle | SRRM1 (Ser/Arg repetitive matrix protein) | Noncoding RNA, splicing factors | Phosphorylation by kinase DYRK3 promotes the condensate dissolution | Pre-mRNA splicing | |
n | Nuclear body (nucleus of Arabidopsis) | FCA+FLL2 (prion like domain) | RNA 3’-ter processing components, polyadenylation proteins: FY, FPA, and FIP1 | Reduce transcriptional read-through by promoting proximal polyadenylation at many sites | ||
o | Transport granules (neuron cell) | hnRNP A2 (low complexity domain); TDP-43 | myelin basic protein mRNA | Phosphorylation by kinase Fyn promotes the condensate dissolution and release mRNA, arginine methylation by PRMT1 inhibits phase separation | Silence the mRNA transcription and transport the mRNA molecules to translation sites | |
p | Nucleolus | GC layer: SURF6 (arginine rich domain) + NPM1 (acidic and basic tracts) | DNA/RNA, UBF, Nucleolin | Component synthesis and assembly of ribosomes | ||
q | Spindle matrix | BuGZ | α/β tubulin; Aurora A (kinase for spindle apparatus assembly regulation) | Higher temperature promotes the formation of the condensates | Regulation of assembly of the mitotic spindle apparatus | |
r | Pericentriolar material (elegans cell) | SPD-5 | α/β tubulin | Assemble: phosphorylation by kinase Polo; disassemble: dephosphorylation by phosphatase PP2A | Facilitate the nucleation and growth of microtubules | |
s | T cell microcluster 1 | LAT +Grb2 (SH2 and SH3 domain) + Sos1 | Proteins on T cell path way: CD45, ZAP70 | Assemble: tyrosine phosphorylation of LAT; disassemble: dephosphorylation by phosphatase PTP1B | Promote the signal output of the T cell signal transduction path way | |
t | T cell microcluster 2 | Nephrin + Nck (SH3 domain) + N-WASP (PRM domain) | Arp2/3 complex (nucleate actin filaments) | Promote actin aggregation into filaments | ||
u | p62 body | p62 (PB1 and UBA domains) + polyubiquitinated proteins | LC3 (receptor for selective autophagy) | Phosphorylation of p62 by kinase CK2 promotes phase separation | Drives autophagic cargo concentration and segregation | |
v | Cortial body | Sla1 + Ent1 (prion like domain) | Clathrin (adheres to cell membrane and mediates endocytosis) | Actin-independent endocytosis; droplet growth provides a driving force for cell membrane invagination |
1 |
Dolgin E. Nature 2018, 555 (7696), 300.
doi: 10.1038/d41586-018-03070-2 |
2 |
Brangwynne C. P. ; Eckmann C. R. ; Courson D. S. ; Rybarska A. ; Hoege C. ; Gharakhani J. ; Julicher F. ; Hyman A. A. Science 2009, 324 (5935), 1729.
doi: 10.1126/science.1172046 |
3 |
Franzmann T. M. ; Jahnel M. ; Pozniakovsky A. ; Mahamid J. ; Holehouse A. S. ; Nuske E. ; Richter D. ; Baumeister W. ; Grill S. W. ; Pappu R. V. ; et al Science 2018, 359 (6371), 47.
doi: 10.1126/science.aao5654 |
4 |
Sabari B. R. ; Dall'Agnese A. ; Boija A. ; Klein I. A. ; Coffey E. L. ; Shrinivas K. ; Abraham B. J. ; Hannett N. M. ; Zamudio A. V. ; Manteiga J. C. ; et al Science 2018, 361 (6400), 379.
doi: 10.1126/science.aar3958 |
5 |
Boija A. ; Klein I. A. ; Sabari B. R. ; Dall'Agnese A. ; Coffey E. L. ; Zamudio A. V. ; Li C. H. ; Shrinivas K. ; Manteiga J. C. ; Hannett N. M. ; Abraham B. J. ; et al Cell 2018, 175 (7), 1842.
doi: 10.1016/j.cell.2018.10.042 |
6 |
Kilic S. ; Lezaja A. ; Gatti M. ; Bianco E. ; Michelena J. ; Imhof R. ; Altmeyer M. EMBO J. 2019, e101379..
doi: 10.15252/embj.2018101379 |
7 |
Rai A. K. ; Chen J. X. ; Selbach M. ; Pelkmans L. Nature 2018, 559 (7713), 211.
doi: 10.1038/s41586-018-0279-8 |
8 |
Ryan V. H. ; Dignon G. L. ; Zerze G. H. ; Chabata C. V. ; Silva R. ; Conicella A. E. ; Amaya J. ; Burke K. A. ; Mittal J. ; Fawzi N. L. Mol. Cell 2018, 69 (3), 465.
doi: 10.1016/j.molcel.2017.12.022 |
9 |
Sear R. P. Soft Matter 2007, 3 (6), 680.
doi: 10.1039/b618126k |
10 |
Su X. ; Ditlev J. A. ; Hui E. ; Xing W. ; Banjade S. ; Okrut J. ; King D. S. ; Taunton J. ; Rosen M. K. ; Vale R. D. Science 2016, 352 (6285), 595.
doi: 10.1126/science.aad9964 |
11 |
Du M. ; Chen Z. J. Science 2018, 361 (6403), 704.
doi: 10.1126/science.aat1022 |
12 |
Milovanovic D. ; Wu Y. ; Bian X. ; De Camilli P. Science 2018, 361 (6402), 604.
doi: 10.1126/science.aat5671 |
13 |
Gomes E. ; Shorter J. J. Biol. Chem. 2019, 294 (18), 7115.
doi: 10.1074/jbc.TM118.001192 |
14 |
Alberti S. ; Gladfelter A. ; Mittag T. Cell 2019, 176 (3), 419.
doi: 10.1016/j.cell.2018.12.035 |
15 |
Boeynaems S. ; Holehouse A. S. ; Weinhardt V. ; Kovacs D. ; Van Lindt J. ; Larabell C. ; Van Den Bosch L. ; Das R. ; Tompa P. S. ; Pappu R. V. ; et al Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (16), 7889.
doi: 10.1073/pnas.1821038116 |
16 |
Amiram M. ; Quiroz F. G. ; Callahan D. J. ; Chilkoti A. Nat. Mater. 2011, 10 (2), 141.
doi: 10.1038/nmat2942 |
17 |
Stroberg W. ; Schnell S. J. Theor. Biol. 2017, 434, 42.
doi: 10.1016/j.jtbi.2017.04.006 |
18 |
Shayegan M. ; Tahvildari R. ; Metera K. ; Kisley L. ; Michnick S. W. ; Leslie S. R. J. Am. Chem. Soc. 2019, 141 (19), 7751.
doi: 10.1021/jacs.8b13349 |
19 |
Wang J. ; Choi J. M. ; Holehouse A. S. . ; Lee H. O. ; Zhang X. ; Jahnel M. ; Maharana S. ; Lemaitre R. ; Pozniakovsky A. ; Drechsel D. ; et al Cell 2018, 174 (3), 688.
doi: 10.1016/j.cell.2018.06.006 |
20 |
Patel A. ; Lee H. O. ; Jawerth L. ; Maharana S. ; Jahnel M. ; Hein M. Y. ; Stoynov S. ; Mahamid J. ; Saha S. ; Franzmann T. M. ; et al Cell 2015, 162 (5), 1066.
doi: 10.1016/j.cell.2015.07.047 |
21 |
Brangwynne C. P. ; Mitchison T. J. ; Hyman A. A. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (11), 4334.
doi: 10.1073/pnas.1017150108 |
22 |
Eggers J. ; Lister J. R. ; Stone H. A. J. Fluid Mech. 1999, 401, 293.
doi: 10.1017/s002211209900662x |
23 |
Berry J. ; Weber S. C. ; Vaidya N. ; Haataja M. ; Brangwynne C. P. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (38), E5237.
doi: 10.1073/pnas.1509317112 |
24 |
Shin Y. ; Brangwynne C. P. Science 2017, 357 (6357)
doi: 10.1126/science.aaf4382 |
25 |
Feric M. ; Vaidya N. ; Harmon T. S. ; Mitrea D. M. ; Zhu L. ; Richardson T. M. ; Kriwacki R. W. ; Pappu R. V. ; Brangwynne C. P. Cell 2016, 165 (7), 1686.
doi: 10.1016/j.cell.2016.04.047 |
26 |
Wei M. T. ; Elbaum-Garfinkle S. ; Holehouse A. S. ; Chen C. C. H. ; Feric M. ; Arnold C. B. ; Priestley R. D. ; Pappu R. V. ; Brangwynne C. P. Nat. Chem. 2017, 9 (11), 1118.
doi: 10.1038/nchem.2803 |
27 |
Brady J. P. ; Farber P. J. ; Sekhar A. ; Lin Y. H. ; Huang R. ; Bah A. ; Nott T. J. ; Chan H. S. ; Baldwin A. J. ; Forman-Kay J,D. ; et al Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (39), E8194.
doi: 10.1073/pnas.1706197114 |
28 |
Reichheld S. E. ; Muiznieks L. D. ; Keeley F. W. ; Sharpe S. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (22), E4408.
doi: 10.1073/pnas.1701877114 |
29 |
Schuster B. S. ; Reed E. H. ; Parthasarathy R. ; Jahnke C. N. ; Caldwell R. M. ; Bermudez J. G. ; Ramage H. ; Good M. C. ; Hammer D. A. Nat. Commun. 2018, 9, 2985.
doi: 10.1038/s41467-018-05403-1 |
30 |
Muiznieks L. D. ; Keeley F. W. J. Biol. Chem. 2010, 285 (51), 39779.
doi: 10.1074/jbc.M110.164467 |
31 |
Ambadipudi S. ; Biernat J. ; Riedel D. ; Mandelkow E. ; Zweckstetter M. Nat. Commun. 2017, 8, 275.
doi: 10.1038/s41467-017-00480-0 |
32 |
Burke K. A. ; Janke A. M. ; Rhine C. L. ; Fawzi N. L. Mol. Cell 2015, 60 (2), 231.
doi: 10.1016/j.molcel.2015.09.006 |
33 |
Langdon E. M. ; Qiu Y. ; Niaki A. G. ; McLaughlin G. A. ; Weidmann C. A. ; Gerbich T. M. ; Smith J. A. ; Crutchley J. M. ; Termini C. M. ; Weeks K. M. ; et al Science 2018, 360 (6391), 922.
doi: 10.1126/science.aar7432 |
34 |
Cho E. J. ; Kim J. S. J. Phys. Chem. B 2012, 116 (12), 3874.
doi: 10.1021/jp3006525 |
35 |
Banerjee P. R. ; Milin A. N. ; Moosa M. M. ; Onuchic P. L. ; Deniz A. A. Angew. Chem. Int. Ed. 2017, 56 (38), 11354.
doi: 10.1002/anie.201703191 |
36 |
Nguemaha V. ; Zhou H. X. Sci. Rep. 2018, 8, 6728.
doi: 10.1038/s41598-018-25132-1 |
37 |
Panagiotopoulos A. Z. Mol. Phys. 1987, 61 (4), 813.
doi: 10.1080/00268978700101491 |
38 |
Kern N. ; Frenkel D. J. Chem. Phys. 2003, 118 (21), 9882.
doi: 10.1063/1.1569473 |
39 | Li, Q.; Peng, X.; Li, Y.; Tang, W.; Zhu, J.; Huang, J.; Qi, Y.; Zhang, Z. Nucleic Acids Res. 2019. Online publication date: 6-Sep-2019. doi: 10.1093/nar/gkz778 |
40 |
Wu R. B. ; Li P. L. Chin. Sci. Bull 2019, 64
doi: 10.1360/N972019-00281 |
吴荣波.; 李丕龙. 科学通报, 2019, 64
doi: 10.1360/N972019-00281 |
|
41 |
Banani S. F. ; Lee H. O. ; Hyman A. A. ; Rosen M. K. Nat. Rev. Mol. Cell Biol. 2017, 18 (5), 285.
doi: 10.1038/nrm.2017.7 |
42 |
Li P. ; Banjade S. ; Cheng H. C. ; Kim S. ; Chen B. ; Guo L. ; Llaguno M. ; Hollingsworth J. V. ; King D. S. ; Banani S. F. ; et al Nature 2012, 483 (7389), 336.
doi: 10.1038/nature10879 |
43 |
Sun D. ; Wu R. ; Zheng J. ; Li P. ; Yu L. Cell Res. 2018, 28 (4), 405.
doi: 10.1038/s41422-018-0017-7 |
44 |
Zeng M. ; Shang Y. ; Araki Y. ; Guo T. ; Huganir R. L. ; Zhang M. Cell 2016, 166 (5), 1163.
doi: 10.1016/j.cell.2016.07.008 |
45 |
Martin E. W. ; Mittag T. Biochemistry 2018, 57 (17), 2478.
doi: 10.1021/acs.biochem.8b00008 |
46 |
Uversky V. N. Curr. Opin. Struct. Biol. 2017, 44, 18.
doi: 10.1016/j.sbi.2016.10.015 |
47 |
Nott T. J. ; Petsalaki E. ; Farber P. ; Jervis D. ; Fussner E. ; Plochowietz A. ; Craggs T. D. ; Bazett-Jones D. P. ; Pawson T. ; Forman-Kay J. D. ; et al Mol. Cell 2015, 57 (5), 936.
doi: 10.1016/j.molcel.2015.01.013 |
48 |
Lin Y. H. ; Forman-Kay J. D. ; Chan H. S. Phys. Rev. Lett. 2016, 117 (17), 178101.
doi: 10.1103/PhysRevLett.117.178101 |
49 |
Vernon R. M. ; Chong P. A. ; Tsang B. ; Kim T. H. ; Bah A. ; Farber P. ; Lin H. ; Forman-Kay J. D. Elife 2018, 7, e31486.
doi: 10.7554/eLife.31486 |
50 |
Escobedo A. ; Topal B. ; Kunze M. B. A. ; Aranda J. ; Chiesa G. ; Mungianu D. ; Bernardo-Seisdedos G. ; Eftekharzadeh B. ; Gairi M. ; Pierattelli R. ; et al Nat. Commun. 2019, 10, 2034.
doi: 10.1038/s41467-019-09923-2 |
51 |
Sawaya M. R. ; Sambashivan S. ; Nelson R. ; Ivanova M. I. ; Sievers S. A. ; Apostol M. I. ; Thompson M. J. ; Balbirnie M. ; Wiltzius J. J. W. ; McFarlane H. T. ; et al Nature 2007, 447 (7143), 453.
doi: 10.1038/nature05695 |
52 |
Peskett T. R. ; Rau F. ; O'Driscoll J. ; Patani R. ; Lowe A. R. ; Saibil H. R. Mol. Cell 2018, 70 (4), 588.
doi: 10.1016/j.molcel.2018.04.007 |
53 |
Fiumara F. ; Fioriti L. ; Kandel E. R. ; Hendrickson W. A. Cell 2010, 143 (7), 1121.
doi: 10.1016/j.cell.2010.11.042 |
54 |
Vieregg J. R. ; Lueckheide M. ; Marciel A. B. ; Leon L. ; Bologna A. J. ; Rivera J. R. ; Tirrell M. V. J. Am. Chem. Soc. 2018, 140 (5), 1632.
doi: 10.1021/jacs.7b03567 |
55 |
Jain A. ; Vale R. D. Nature 2017, 546 (7657), 243.
doi: 10.1038/nature22386 |
56 |
Zhang H. ; Elbaum-Garfinkle S. ; Langdon E. M. ; Taylor N. ; Occhipinti P. ; Bridges A. A. ; Brangwynne C. P. ; Gladfelter A. S. Mol. Cell 2015, 60 (2), 220.
doi: 10.1016/j.molcel.2015.09.017 |
57 |
Brangwynne C. P. ; Tompa P. ; Pappu R. V. Nat. Phys. 2015, 11 (11), 899.
doi: 10.1038/nphys3532 |
58 |
Flory P. J. J. Chem. Phys. 1942, 10 (1), 51.
doi: 10.1063/1.1723621 |
59 |
Huggins M. L. J.Phys. Chem. 1942, 46 (1), 151.
doi: 10.1021/j150415a018 |
60 |
Zhou H. X. ; Nguemaha V. ; Mazarakos K. ; Qin S. Trends Biochem. Sci. 2018, 43 (7), 499.
doi: 10.1016/j.tibs.2018.03.007 |
61 |
Overbeek J. T. ; Voorn M. J. J. Cell. Physiol. Supplement 1957, 49 (Suppl 1), 7.
doi: 10.1002/jcp.1030490404 |
62 |
Wittmer J. ; Johner A. ; Joanny J. F. Europhys. Lett. 1993, 24 (4), 263.
doi: 10.1209/0295-5075/24/4/005 |
63 |
Borue V. Y. ; Erukhimovich I. Y. Macromolecules 1988, 21 (11), 3240.
doi: 10.1021/ma00189a019 |
64 |
Lin Y. H. ; Brady J. P. ; Forman-Kay J. D. ; Chan H. S. New J. Phys. 2017, 19, 115003.
doi: 10.1088/1367-2630/aa9369 |
65 |
McCarty J. ; Delaney K. T. ; Danielsen S. P. O. ; Fredrickson G. H. ; Shea J. E. J. Phys. Chem. Lett. 2019, 10 (8), 1644.
doi: 10.1021/acs.jpclett.9b00099 |
66 |
Banjade S. ; Wu Q. ; Mittal A. ; Peeples W. B. ; Pappu R. V. ; Rosen M. K. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (47), E6426.
doi: 10.1073/pnas.1508778112 |
67 |
Quiroz F. G. ; Chilkoti A. Nat. Mater. 2015, 14 (11), 1164.
doi: 10.1038/nmat4418 |
68 |
Zhou H. ; Song Z. ; Zhong S. ; Zuo L. ; Qi Z. ; Qu L. J. ; Lai L. Angew. Chem. Int. Ed. 2019, 58 (15), 4858.
doi: 10.1002/anie.201810373 |
69 |
Chang L. W. ; Lytle T. K. ; Radhakrishna M. ; Madinya J. J. ; Velez J. ; Sing C. E. ; Perry S. L. Nat. Commun. 2017, 8, 1273.
doi: 10.1038/s41467-017-01249-1 |
70 |
Dignon G. L. ; Zheng W. ; Mittal J. Curr. Opin. Chem. Eng. 2019, 23, 92.
doi: 10.1016/j.coche.2019.03.004 |
71 |
Dignon G. L. ; Zheng W. ; Kim Y. C. ; Best R. B. ; Mittal J. Plos Comput. Biol. 2018, 14 (1), e1005941.
doi: 10.1371/journal.pcbi.1005941 |
72 |
Choi J. M. ; Dar F. ; Pappu R. V. bioRxiv 2019, 611095
doi: 10.1101/611095 |
73 |
Das S. ; Eisen A. ; Lin Y. H. ; Chan H. S. J. Phys. Chem. B 2018, 122 (21), 5418.
doi: 10.1021/acs.jpcb.7b11723 |
74 |
Das S. ; Amin A. N. ; Lin Y. H. ; Chan H. S. Phys. Chem. Chem. Phys. 2018, 20 (45), 28558.
doi: 10.1039/c8cp05095c |
75 |
Dignon G. L. ; Zheng W. ; Best R. B. ; Kim Y. C. ; Mittal J. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (40), 9929.
doi: 10.1073/pnas.1804177115 |
76 |
Harmon T. S. ; Holehouse A. S. ; Rosen M. K. ; Pappu R. V. Elife 2017, 6, e30294.
doi: 10.7554/eLife.30294 |
77 |
Mitrea D. M. ; Kriwacki R. W. Cell Commun. Signal. 2016, 14, 1.
doi: 10.1186/s12964-015-0125-7 |
78 |
Strulson C. A. ; Molden R. C. ; Keating C. D. ; Bevilacqua P. C. Nat. Chem. 2012, 4 (11), 941.
doi: 10.1038/nchem.1466 |
79 |
Case L. B. ; Zhang X. ; Ditlev J. A. ; Rosen M. K. Science 2019, 363 (6431), 1093.
doi: 10.1126/science.aau6313 |
80 |
Riback J. A. ; Katanski C. D. ; Kear-Scott J. L. ; Pilipenko E. V. ; Rojek A. E. ; Sosnick T. R. ; Drummond D. A. Cell 2017, 168 (6), 1028.
doi: 10.1016/j.cell.2017.02.027 |
81 |
Altmeyer M. ; Neelsen K. J. ; Teloni F. ; Pozdnyakova I. ; Pellegrino S. ; Grofte M. ; Rask M. B. D. ; Streicher W. ; Jungmichel S. ; Nielsen M. L. ; et al Nat. Commun. 2015, 6, 8088.
doi: 10.1038/ncomms9088 |
82 |
Hnisz D. ; Shrinivas K. ; Young R. A. ; Chakraborty A. K. ; Sharp P. A. Cell 2017, 169 (1), 13.
doi: 10.1016/j.cell.2017.02.007 |
83 |
Wang J. T. f. ; Smith J. ; Chen B. C. ; Schmidt H. ; Rasoloson D. ; Paix A. ; Lambrus B. G. ; Calidas D. ; Betzig E. ; Seydoux G. Elife 2014, 3, e04591.
doi: 10.7554/eLife.04591 |
84 |
Smith J. ; Calidas D. ; Schmidt H. ; Lu T. ; Rasoloson D. ; Seydoux G. Elife 2016, 5, e21337.
doi: 10.7554/eLife.21337 |
85 |
Zhang G. ; Wang Z. ; Du Z. ; Zhang H. Cell 2018, 174 (6), 1492.
doi: 10.1016/j.cell.2018.08.006 |
86 |
Li S. ; Yang P. ; Tian E. ; Zhang H. Mol. Cell 2013, 52 (3), 421.
doi: 10.1016/j.molcel.2013.09.014 |
87 |
Boczek E. E. ; Alberti S. Science 2018, 361 (6402), 548.
doi: 10.1126/science.aau5477 |
88 |
Wippich F. ; Bodenmiller B. ; Trajkovska M. G. ; Wanka S. ; Aebersold R. ; Pelkmans L. Cell 2013, 152 (4), 791.
doi: 10.1016/j.cell.2013.01.033 |
89 |
Zacharogianni M. ; Gomez A. A. ; Veenendaal T. ; Smout J. ; Rabouille C. Elife 2014, 3, e04132.
doi: 10.7554/eLife.04132 |
90 |
van Leeuwen W. ; van der Krift F. ; Rabouille C. J. Cell Biol. 2018, 217 (7), 2261.
doi: 10.1083/jcb.201802003 |
91 |
Shin Y. ; Chang Y. C. ; Lee D. S. W. ; Berry J. ; Sanders D. W. ; Ronceray P. ; Wingreen N. S. ; Haataja M. ; Brangwynne C. P. Cell 2018, 175 (6), 1481.
doi: 10.1016/j.cell.2018.10.057 |
92 |
Larson A. G. ; Elnatan D. ; Keenen M. M. ; Trnka M. J. ; Ohnston J. B. J. ; Burlingame A. L. ; Agard D. A. ; Redding S. ; Narlikar G. J. Nature 2017, 547 (7662), 236.
doi: 10.1038/nature22822 |
93 |
Lu H. ; Yu D. ; Hansen A. S. ; Ganguly S. ; Liu R. ; Heckert A. ; Darzacq X. ; Zhou Q. Nature 2018, 558 (7709), 318.
doi: 10.1038/s41586-018-0174-3 |
94 |
Harlen K. M. ; Churchman L. S. Nat. Rev. Mol. Cell Biol. 2017, 18 (4), 263.
doi: 10.1038/nrm.2017.10 |
95 |
Fang X. ; Wang L. ; Ishikawa R. ; Li Y. ; Fiedler M. ; Liu F. ; Calder G. ; Rowan B. ; Weigel D. ; Li P. ; Dean C. Nature 2019, 569 (7755), 265.
doi: 10.1038/s41586-019-1165-8 |
96 |
Ferrolino M. C. ; Mitrea D. M. ; Michael J. R. ; Kriwacki R. W. Nat. Commun. 2018, 9, 5064.
doi: 10.1038/s41467-018-07530-1 |
97 |
Jiang H. ; Wang S. ; Huang Y. ; He X. ; Cui H. ; Zhu X. ; Zheng Y. Cell 2015, 163 (1), 108.
doi: 10.1016/j.cell.2015.08.010 |
98 |
Woodruff J. B. J. Mol. Biol. 2018, 430 (23), 4762.
doi: 10.1016/j.jmb.2018.04.041 |
99 |
Bergeron-Sandoval L. P. ; Heris H. K. ; Hendricks A. G. ; Ehrlicher A. J. ; Franois P. ; Pappu R. V. ; Michnick S. W. bioRxiv 2017, 145664
doi: 10.1101/145664 |
100 |
Saito M. ; Hess D. ; Eglinger J. ; Fritsch A. W. ; Kreysing M. ; Weinert B. T. ; Choudhary C. ; Matthias P. Nat. Chem. Biol. 2019, 15 (1), 51.
doi: 10.1038/s41589-018-0180-7 |
101 |
Patel A. ; Malinovska L. ; Saha S. ; Wang J. ; Alberti S. ; Krishnan Y. ; Hyman A. A. Science 2017, 356 (6339), 753.
doi: 10.1126/science.aaf6846 |
102 |
Aumiller W. M. ; J r. ; Keating C. D. Nat. Chem. 2016, 8 (2), 129.
doi: 10.1038/nchem.2414 |
103 |
Cermakova K. ; Hodges H. C. Molecules 2018, 23 (8), 1958.
doi: 10.3390/molecules23081958 |
104 |
McGurk L. ; Gomes E. ; Guo L. ; Mojsilovic-Petrovic J. ; Tran V. ; Kalb R. G. ; Shorter J. ; Bonini N. M. Mol. Cell 2018, 71 (5), 703.
doi: 10.1016/j.molcel.2018.07.002 |
105 |
Jin F. ; Yu C. ; Lai L. ; Liu Z. Plos Comput. Biol. 2013, 9 (10), e1003249.
doi: 10.1371/journal.pcbi.1003249 |
106 |
Yu C. ; Niu X. ; Jin F. ; Liu Z. ; Jin C. ; Lai L. Sci. Rep. 2016, 6, 22298.
doi: 10.1038/srep22298 |
107 |
Fang M. Y. ; Markmiller S. ; Vu A. Q. ; Javaherian A. ; Dowdle W. E. ; Jolivet P. ; Bushway P. J. ; Castello N. A. ; Baral A. ; Chan M. Y. ; et al Neuron 2019, 5, 802.
doi: 10.1016/j.neuron.2019.05.048 |
108 |
Warshel A. ; Kato M. ; Pisliakov A. V. J. Chem. Theory Comput. 2007, 3 (6), 2034.
doi: 10.1021/ct700127w |
109 |
Ponder J. W. ; Wu C. ; Ren P. ; Pande V. S. ; Chodera J. D. ; Schnieders M. J. ; Haque I. ; Mobley D. L. ; Lambrecht D. S. ; DiStasio R. A. ; et al J. Phys. Chem. B 2010, 114 (8), 2549.
doi: 10.1021/jp910674d |
110 |
Zhang C. ; Bell D. ; Harger M. ; Ren P. J. Chem. Theory Comput. 2017, 13 (2), 666.
doi: 10.1021/acs.jctc.6b00918 |
111 |
Ruan H. ; Sun Q. ; Zhang W. ; Liu Y. ; Lai L. Drug Discov. Today 2019, 24 (1), 217.
doi: 10.1016/j.drudis.2018.09.017 |
[1] | 黄永棋, 刘志荣. 天然无序蛋白质: 序列-结构-功能的新关系[J]. 物理化学学报, 2010, 26(08): 2061 -2072 . |
|