物理化学学报 >> 2020, Vol. 36 >> Issue (9): 2003047.doi: 10.3866/PKU.WHXB202003047
所属专题: 精准纳米合成
杨天怡1, 崔铖1, 戎宏盼1,*(), 张加涛1, 王定胜2,*()
收稿日期:
2020-03-19
录用日期:
2020-04-17
发布日期:
2020-04-24
通讯作者:
戎宏盼,王定胜
E-mail:rhp@bit.edu.cn;wangdingsheng@mail.tsinghua.edu.cn
作者简介:
戎宏盼,2015年获清华大学博士学位;现任北京理工大学材料学院特别副研究员。主要从事金属纳米材料的制备与应用、单原子材料制备及电催化性能研究|王定胜,2009年获清华大学化学系博士学位;国家优秀青年基金获得者,现任清华大学化学系副教授,博导。主要从事纳米材料制备与性能、金属纳米催化研究
基金资助:
Tianyi Yang1, Cheng Cui1, Hongpan Rong1,*(), Jiatao Zhang1, Dingsheng Wang2,*()
Received:
2020-03-19
Accepted:
2020-04-17
Published:
2020-04-24
Contact:
Hongpan Rong,Dingsheng Wang
E-mail:rhp@bit.edu.cn;wangdingsheng@mail.tsinghua.edu.cn
Supported by:
摘要:
铂基金属间化合物纳米晶因其高度有序的结构特点,优异的抗氧化及耐腐蚀性能,作为电极材料被广泛应用于各类电催化反应,目前已有的PtCo金属间化合物纳米晶在燃料电池阴极反应(氧还原反应)中的活性和稳定性均达到了美国能源部(DOE) 2020年的目标。为了进一步提高金属间化合物纳米晶的电催化性能,需要对影响纳米晶电催化性能的因素进行深入研究。本文综述了铂基金属间化合物纳米晶的研究现状,着重介绍了铂基金属间化合物的可控合成策略及其在电催化领域的最新研究进展,分析总结了该领域存在的问题,并展望了其未来发展方向。
杨天怡, 崔铖, 戎宏盼, 张加涛, 王定胜. 铂基金属间化合物纳米晶的最新进展:可控合成与电催化应用[J]. 物理化学学报, 2020, 36(9), 2003047. doi: 10.3866/PKU.WHXB202003047
Tianyi Yang, Cheng Cui, Hongpan Rong, Jiatao Zhang, Dingsheng Wang. Recent Advances in Platinum-based Intermetallic Nanocrystals: Controlled Synthesis and Electrocatalytic Applications[J]. Acta Physico-Chimica Sinica 2020, 36(9), 2003047. doi: 10.3866/PKU.WHXB202003047
表1
美国能源部2020年质子交换膜燃料电池的技术目标9"
Characteristic | Units | 2020 Targets |
Cost | $·kW-1 | 3 |
Mass activity | A·mg-1 @ 900 mV | 0.44 |
Loss in initial catalytic activity | % mass activity loss | < 40 |
Electrocatalyst support stability | % mass activity loss | 0.44 |
Platinum group metal total loading (both electrodes) | mg·cm-2 electrode area | 0.125 |
Rated power (150 kPa) | mW·cm-2 | 1000 |
表2
近年来Pt基金属间化合物的合成方法"
Method | Catalysts | Surfactants & solvents | Metal precursor | Reaction time/h | Reaction temperature/℃ | Ref. | Year | |
A | B | |||||||
Solvothermal reactions | Pt3Sn | PVP, DMF | Pt(acac)2 | SnCl2 | 6 | 180 | 2016 | |
PtZn | PVP, DMF | Pt(acac)2 | Zn(acac)2 | 9 | 180 | 2014 | ||
Oil phase synthesis | Pt45Sn25Bi30 | ODE, OAm, AA, CTAB | Pt(acac)2 | SnCl2, Bi(act)3 | 1 | 220 | 2019 | |
Pt3Ga@Pt | ODE, OAm | Pt(acac)2 | GaCl3 | 12 | 300 | 2018 | ||
PtPb | ODE, OAm, AA | Pt(acac)2 | Pb(acac)2 | 5 | 160 | 2016 | ||
Polyol process | PtSn/ATO | EG | H2PtCl6 | SnCl4 | 3 | 200 | 2019 | |
PtBi/Pt | PVP, DEG | Pt(acac)2 | C30H57BiO6 | 0.5 | 150 | 2018 | ||
PtSn | TEG | K2PtCl6 | SnCl2 | 0.5 | 550 | 2008 | ||
PtPb | TEG | K2PtCl6 | Pb(C2H3O2)2 | 0.5 | 550 | 2008 | ||
PtBi | TEG | K2PtCl6 | Bi(NO3)3 | 0.5 | 550 | 2008 | ||
FePt3 | TEG | K2PtCl6 | FeCl3 | 0.5 | 550 | 2008 | ||
Method | Catalysts | Metal precursor | Reaction time/h | Reaction temperature/℃ | Ref. | Year | ||
A | B | |||||||
Annealing | PtZn/HNCNT | H2PtCl6 | ZnO | 1 | 800 | 2019 | ||
Pt3Ti | Pt(NH3)4(NO3)2 | TiH2 | 0.5 | 700 | 2019 | |||
L10-CoPt | Pt(acac)2 | Co(acac)2 | 6 | 650 | 2019 | |||
L10-FePt | Pt(acac)2 | Fe(CO)5 | 6 | 700 | 2015 | |||
FeCuPt | Pt(acac)2 | Cu(acac)2, Fe(CO)5 | 1 | 220 | 2014 | |||
Pt3Co/C | H2PtCl6 | CoCl2 | 2 | 700 | 2012 | |||
fct-FePtAu | Pt(acac)2 | Fe(CO)5, HAuCl4 | 1 | 600 | 2012 | |||
FePt/MgO | Pt(acac)2 | Fe(CO)5 | 6 | 750 | 2010 | |||
CVD | Pt3Co | H2PtCl6 | Co(acac)2 | 6 | 550 | 2015 | ||
PtGe | Pt(NH3)4Cl2 | Ge(acac)2Cl2 | 1 | 550 | 2000 |
表3
近年在各类电催化反应中性能优异的铂基金属间化合物催化剂的电化学性能"
Ref. | Pt (w, %) | Main catalytic performances | Electrolyte/(mol?L?1) | |||||
η/(mV@10 mA?cm?2) vs RHE | Tafel slope/(mV?decade?1) | SA/(mA?cm?2) | MA/(A?mg?1) | Cycling tests | ||||
HER | Lim, 2019 | 86.72 | 27 | 43.3 | 145.2 @ 50 mV | 0.55 @ 50 mV | Retain ~95% in current | 0.5 H2SO4 |
Pt3Ga | (ICP-MS) | density (10000 cycle) | ||||||
#Li, 2019 | 1 | 32.7 | 32.3 | 17.17 @ 50 mV | 1.305 @ 50 mV | The η reduced by 2.3 mV (2000 cycle) | 0.1 HClO4 | |
Pt/Ti3C2Tx | (ICP-MS) | |||||||
#Lim, 2019 | 76.4 | 53 | 37 | 56.2 @ ?0.1 V | 0.3678 @ ?0.1 V | No obvious loss of performance (10000 cycle) | 0.5 H2SO4 | |
Pt3Ge | (ICP-MS) | |||||||
Maccio, 2005, | – | 150 | 121 | – | / | – | 1 NaOH | |
PtHo | ||||||||
*Pt black, | – | 30 | 47.6 | 137.6 @ 50 mV | 0.45 @ 50 mV | – | 0.5 H2SO4 | |
7440-06-4 | ||||||||
*Pt/C, 599002 | 20 | 31 | 51.4 | 104.1 @ 50 mV | 1.7 @ 50 mV | The η reduced by 7 mV (10000 cycle) | 0.5 H2SO4 | |
*commercial Pt/Vulcan | 20 | 55.8 | – | 1.79 @ 50 mV | 0.397 @ 50 mV | – | 0.1 HClO4 | |
Ref. | Pt : M | HOR onset potential/V | Tafel slope/(mV?decade?1) | CO-tolerance | Cycling tests | Electrolyte | ||
HOR | #Liu, 2011 | Pt : Fe = | 0 V vs SCE (1000 ppm CO, balance H2) | – | Exhibit sharp CO oxidation peaks | No obvious loss of catalytic performance (500 cycles) | 0.5 H2SO4 | |
Pt3Fe@Pt | 63 : 37 | |||||||
Innocente 2007, | Pt : Sb = | – | 57 | CO-covered PtSb surfaces achieved current densities higher than equivalent Pt surfaces | – | 0.15 HClO4 | ||
PtSb | 1 : 1 | |||||||
Ref. | Pt (w, %) | Half-wave potential/V vs RHE | Electrochemical active surface area/(m | SA/(mA?cm?2) | MA/(A?mg?1) @ 0.9 V | Cycling tests | Electrolyte/(mol?L?1) | |
ORR | #Li, 2019, L10-CoPt@Pt | 8 (ICP-MS) | – | 26.4 | 8.26 @ 0.9 V | 2.26 | 18% MA loss (30000 cycles) | 0.1 HClO4 |
#Wang, 2018 | – | 0.92 | 45 | 5.1 @ 0.85 V | 1.15 | Half wave potential loss | 0.1 HClO4 | |
Pt3Co | 12 mV (30000 cycles) | |||||||
#Xiao, 2018 | – | – | – | – | 4.93 | Half wave potential loss | 0.1 HClO4 | |
PdFe@Pt | 6 mV (10000 cycles) | |||||||
#Kuttiyiel, 2018, | – | 0.9 | – | 0.53 @ 0.9 V | 0.68 | Half wave potential loss | 0.1 HClO4 | |
L10-AuPtCo@Pt | 7 mV (10000 cycles) | |||||||
#Xiong, 2018, | 35.49 | 0.943 | 51 | 1.1 @ 0.9 V | 0.5 | Half wave potential loss | 0.1 HClO4 | |
Pt3Co/C | (TGA) | 25 mV (4000 cycles) | ||||||
#Wang, 2017, | – | – | 58.8 | 4.33 @ 0.9 V | 2.55 | 15.4% loss of | 0.1 HClO4 | |
PdCuB2@Pt-Cu | activity(10000 cycles) | |||||||
#Bu, 2016, | – | – | 55 | 7.8 @ 0.9 V | 4.3 | 7.7% loss of mass activity | 0.1 HClO4 | |
PtPb@Pt | (50000 cycles) | |||||||
#Chung, 2015, fct- | – | – | – | 2.3 @ 0.9 V | 1.6 | A little ESCA is lost | 0.1 HClO4 | |
PtFe@N-C | (10000 cycles) | |||||||
#Li, 2015, fct?FePt | – | 0.927 | – | 3.16 @ 0.9 V | 0.69 | Fe : Pt ratio reduced from | 0.5 H2SO4 | |
50 : 50 to 47 : 53 | ||||||||
(20000 cycles) | ||||||||
#Wang, 2014, AuCu@Pt | 2.8 (XRF) | – | – | 0.37 @ 0.9 V | 0.56 | 29% MA loss | 0.1 HClO4 | |
(10000 cycles) | ||||||||
#Na, 2008, | 9.3 (TGA) | 0.791 | 129.4 | – | 0.296 | 11% MA loss | 0.1 HClO4 | |
Pt/ITO/CB | (3000 cycles) | |||||||
Ref. | Pt (w, %) | Main catalytic performances | Electrolyte/(mol?L?1) | |||||
η/(mV@10 mA?cm?2) vs RHE | Tafel slope/(mV?decade?1) | SA/(mA?cm?2) | MA/(A?mg?1) | Cycling tests | ||||
FAOR | *Commercial Pt/C | – | – | – | 0.22 @ 0.9 V | 0.12 | 85% MA loss | 0.1 HClO4 |
(30000 cycles) | ||||||||
*Pt/C Tanaka Kikinzoku | 46.6 | 0.86 | – | 0.25 @ 0.9 V | 0.22 | Half wave potential loss | 0.1 HClO4 | |
12 mV (10000 cycles) | ||||||||
*Pt/C(Johnson Matthey Co.) | 20 | – | – | 0.22 @ 0.9 V | 0.14 | The ESCA decreased significantly (10000 cycles) | 0.1 HClO4 | |
*Pt catalyst | 18.6 | 0.872 | 81.8 | – | > 0.9 | Half wave potential loss | 0.1 HClO4 | |
(HiSPEC 2000) | 65 mV (3000 cycles) | |||||||
#Rong, 2016, Pt3Sn | – | – | 5.1 | 27.6 | 1.7 | lost about 5% of initial peak current density, | 0.1 HClO4 | |
#Zhang, 2012, fct-FePtAu | – | ?0.2 vs Ag/AgCl | – | – | 2.8099 | Retain 92.5% of this MA(13 h) | 0.5 H2SO4 | |
#Abe, 2008, Pt3Ti | – | 0.05 vs Ag/AgCl | – | – | – | – | 0.1 H2SO4 | |
*Commercial Pt/C | 20 | – | 70.9 | – | – | Lost about 80% of initial peak current density | 0.1 HClO4 | |
Ref. | Pt (w, %) | Oxidation onset potential/V | Electrochemical active surface area/(m | SA/(mA?cm?2) | MA/(A?mg?1) | Cycling tests | Electrolyte/(mol?L?1) | |
MOR | #Wang, 2019, | – | 0.39 vs RHE | 53 | 1.3 | 0.69 | – | 0.1 HClO4 |
PtFe@PtRuFe | ||||||||
#Feng, 2019, | – | – | – | 7.195 | 1.09 | The loss of peak current density is negligible | 0.5 H2SO4 | |
3Ga@Pt | (1000 cycles) | |||||||
#Feng, 2017, | / | / | 60.5 | – | – | – | 0.1 HClO4 | |
Au@Ag2S@Pt 102 | ||||||||
#Qi, 2017, | / | 0.154 vs Ag/AgCl | – | 1.08 | 0.612 | 3% SA loss | 0.5 H2SO4 | |
PtZn/MWNT | (1000 cycles) | |||||||
*Commercial Pt/C(JM) | 20 | 0.83 vs RHE | 71 | 0.15 | 0.11 | – | 0.1 HClO4 | |
*Commercial PtRu/C | / | 0.43 vs RHE | 49 | 0.83 | 0.41 | – | 0.1 HClO4 | |
*Commercial | / | 0.247 vs Ag/AgCl | – | – | – | 50% SA loss | 0.5 H2SO4 | |
Pt/Vulcan | (1000 cycles) | |||||||
Ref. | Pt (w, %) | Oxidation onset potential/V | Completely oxidizes ethanol to CO2 | SA/(mA?cm?2) | MA/(A?mg?1) | Cycling tests | Electrolyte/(mol?L?1) | |
EtOR | #Yuan, 2018, PtBi@Pt | – | – | – | 136.5 vs RHE | 5.95 | No significant change in the size and shape (10000 s) | 1 NaOH |
#Zhang, 2016, Pt3Co@Pt | – | – | No | – | 0.79 | – | 0.1 HClO4 | |
#Kodiyath, 2015, Pt3Ta | – | 0.27 V vs Ag/AgCl | Yes | – | – | Retain 85% in ESCA (10000 cycles) | 0.5 H2SO4 | |
*Commercial | 20 | – | – | 22.2 vs RHE | 0.689 | Serious aggregation | 1 NaOH | |
Pt/C | (10000 s) |
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Xu Q. ; Guo C. ; Tian S. ; Zhang J. ; Chen W. ; Cheong W. ; Gu L. ; Zheng L. ; Xiao J. ; Liu Q. ; et al Sci. China Mater. 2020.
doi: 10.1007/s40843-020-1334-6 |
3 |
Xiong Y. ; Dong J. ; Zheng Q. ; Xin P. ; Chen W. ; Wang Y. ; Li Z. ; Jin Z. ; Xing W. ; Zhuang Z. ; et al Nat. Nanotechnol. 2020.
doi: 10.1038/s41565-020-0665-x |
4 |
Li X. ; Rong H. ; Zhang J. ; Wang D. ; Li Y. Nano Res. 2020.
doi: 10.1007/s12274-020-2755-3 |
5 |
Sun T. ; Xu L. ; Wang D. ; Li Y. Nano Res. 2019, 12, 2067.
doi: 10.1007/s12274-019-2345-4 |
6 |
Huang L. ; Jiang Z. ; Gong W. ; Shen P. K. Appl. Nano Mater. 2018, 1, 5019.
doi: 10.1021/acsanm.8b01113 |
7 |
Huang L. ; Zhang X. ; Wang Q. ; Han Y. ; Fang Y. ; Dong S. J. Am. Chem. Soc. 2018, 140, 1142.
doi: 10.1021/jacs.7b12353 |
8 |
Xue S. ; Deng W. ; Yang F. ; Yang J. ; Amiinu I. S. ; He D. ; Tang H. ; Mu S. ACS Catal. 2018, 8, 7578.
doi: 10.1021/acscatal.8b00366 |
9 | US Department of Energy. (2018). DOE technical targets for polymer electrolyte membrane fuel cell components. https://www.energy.gov/eere/fuelcells/doe-technicaltargets-polymer-electrolyte-membrane-fuelcell-components |
10 |
Fu K. ; Zeng L. ; Liu J. ; Liu M. ; Li S. ; Guo W. ; Gao Y. ; Pan M. J. Alloys Compd. 2020, 815, 152374.
doi: 10.1016/j.jallcom.2019.152374 |
11 |
Liu L. ; Corma A. Chem. Rev. 2018, 118, 4981.
doi: 10.1021/acs.chemrev.7b00776 |
12 |
Robinson J. E. ; Labrador N. Y. ; Chen H. ; Sartor B. E. ; Esposito D. V. ACS Catal. 2018, 8, 11423.
doi: 10.1021/acscatal.8b03626 |
13 | Wu, Z.; Bukowski, B. C.; Li, Z.; Milligan, C.; Zhou, L.; Ma, T.; Wu, Y.; Ren, Y.; Ribeiro, F. H.; Delgass, W. N.; et al. J. Am. Chem. Soc. 2018, 140, 14870. doi: 10.1021/jacs.8b08162 |
14 |
Zhao X. ; Liu X. ; Huang B. ; Wang P. ; Pei Y. J. Mater. Chem. A 2019, 7, 24583.
doi: 10.1039/c9ta08661g |
15 |
Xiao W. ; Lei W. ; Gong M. ; Xin H. L. ; Wang D. ACS Catal. 2018, 8, 3237.
doi: 10.1021/acscatal.7b04420 |
16 |
Li J. ; Sun S. Acc. Chem. Res. 2019, 52, 2015.
doi: 10.1021/acs.accounts.9b00172 |
17 |
Karamad M. ; Tripkovic V. ; Rossmeisl J. ACS Catal. 2014, 4, 2268.
doi: 10.1021/cs500328c |
18 |
Zhu Y. ; Yuan M. ; Deng L. ; Ming R. ; Zhang A. ; Yang M. ; Chai B. ; Ren Z. RSC Adv. 2017, 7, 1553.
doi: 10.1039/c6ra24754g |
19 |
Magno L. M. ; Sigle W. ; van Aken P. A. ; Angelescu D. ; Stubenrauch C. Phys. Chem. Chem. Phys. 2011, 13, 9134.
doi: 10.1039/c1cp20159j |
20 |
Wang C. ; Sang X. ; Gamler J. T. L. ; Chen D. P. ; Unocic R. R. ; Skrabalak S. E. Nano Lett. 2017, 17, 5526.
doi: 10.1021/acs.nanolett.7b02239 |
21 |
Thompson S. T. ; James B. D. ; Huya-Kouadio J. M. ; Houchins C. ; DeSantis D. A. ; Ahluwalia R. ; Wilson A. R. ; Kleen G. ; Papageorgopoulos D. J. Power Sources 2018, 399, 304.
doi: 10.1016/j.jpowsour.2018.07.100 |
22 |
Li J. ; Sharma S. ; Liu X. ; Pan Y. ; Spendelow J. S. ; Chi M. ; Jia Y. ; Zhang P. ; Cullen D. A. ; Cullen D. A. ; Xi Z. ; et al Joule 2019, 3, 124.
doi: 10.1016/j.joule.2018.09.016 |
23 |
Wang X. X. ; Swihart M. T. ; Wu G. Nat. Catal. 2019, 2, 578.
doi: 10.1038/s41929-019-0304-9 |
24 |
Bortoloti F. ; Garcia A. C. ; Angelo A. C. D. Int. J. Int. J. Hydrogen Energy 2015, 40, 10816.
doi: 10.1016/j.ijhydene.2015.06.145 |
25 |
Santos E. ; Pinto L. M. C. ; Soldano G. ; Innocente A. F. ; Ângelo A. C. D. ; Schmickler W. Catal. Today 2013, 202, 191.
doi: 10.1016/j.cattod.2012.07.044 |
26 |
Rong H. ; Mao J. ; Xin P. ; He D. ; Chen Y. ; Wang D. ; Niu Z. ; Wu Y. ; Li Y. Adv. Mater. 2016, 28, 2540.
doi: 10.1002/adma.201504831 |
27 |
Russell A. E. Faraday Discuss. 2008, 140, 9.
doi: 10.1039/b814058h |
28 |
You G. ; Jiang J. ; Li M. ; Li L. ; Tang D. ; Zhang J. ; Zeng X. C. ; He R. ACS Catal. 2017, 8, 132.
doi: 10.1021/acscatal.7b02698 |
29 |
Cui Z. ; Chen H. ; Zhao M. ; Marshall D. ; Yu Y. ; Abruna H. ; DiSalvo F. J. J. Am. Chem. Soc. 2014, 136, 29.
doi: 10.1021/ja504573a |
30 |
Liao H. ; Zhu J. ; Hou Y. Nanoscale 2014, 6, 1049.
doi: 10.1039/c3nr05590f |
31 |
Qi Z. ; Xiao C. ; Liu C. ; Goh T. W. ; Zhou L. ; Maligal-Ganesh R. ; Pei Y. ; Li X. ; Curtiss L. A. ; Huang W. J. Am. Chem. Soc. 2017, 139, 4762.
doi: 10.1021/jacs.6b12780 |
32 |
Yuan X. ; Jiang X. ; Cao M. ; Chen L. ; Nie K. ; Zhang Y. ; Xu Y. ; Sun X. ; Li Y. ; Zhang Q. Nano Res. 2018, 12, 429.
doi: 10.1007/s12274-018-2234-2 |
33 |
Wang Q. ; Chen S. ; Li P. ; Ibraheem S. ; Li J. ; Deng J. ; Wei Z. Appl. Catal., B 2019, 252, 120.
doi: 10.1016/j.apcatb.2019.04.023 |
34 |
Furukawa S. ; Komatsu T. ACS Catal. 2017, 7, 735.
doi: 10.1021/acscatal.6b02603 |
35 |
Abe H. ; Matsumoto F. ; Alden L. R. ; Warren S. C. ; Abruña H. D. ; DiSalvo F. J. J. Am. Chem. Soc. 2008, 130, 5452.
doi: 10.1021/ja075061c |
36 |
Yan Y. ; Du J. S. ; Gilroy K. D. ; Yang D. ; Xia Y. ; Zhang H. Adv. Mater. 2017, 29, 1605997.
doi: 10.1002/adma.201605997 |
37 |
Wang D. ; Peng Q. ; Li Y. Nano Res. 2010, 3, 574.
doi: 10.1007/s12274-010-0018-4 |
38 |
Chen Q. L. ; Zhang J. W. ; Jia Y. Y. ; Jiang Z. Y. ; Xie Z. X. ; Zheng L. S. Nanoscale 2014, 6, 7019.
doi: 10.1039/c4nr00313f |
39 |
Dong H. ; Chen Y. C. ; Feldmann C. Green Chem. 2015, 17, 4107.
doi: 10.1039/c5gc00943j |
40 |
Teichert J. ; Heise M. ; Chang J. H. ; Ruck M. Eur. J. Inorg. Chem. 2017, 42, 4930.
doi: 10.1002/ejic.201700966 |
41 |
Chen W. ; Lei Z. ; Zeng T. ; Wang L. ; Cheng N. C. ; Tan Y. Y. ; Mu S. C. Nanoscale 2019, 11, 19895.
doi: 10.1039/c9nr07245d |
42 |
Bauer J. C. ; Chen X. ; Liu Q. S. ; Phan T. H. ; Schaak R. E. J. Mater. Chem. 2008, 18, 275.
doi: 10.1039/b712035d |
43 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. ; Su D. ; et al Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
44 |
Feng Q. ; Zhao S. ; He D. ; Tian S. ; Gu L. ; Wen X. ; Chen C. ; Peng Q. ; Wang D. ; Li Y. J. Am. Chem. Soc. 2018, 140, 2773.
doi: 10.1021/jacs.7b13612 |
45 |
Luo S. ; Chen W. ; Cheng Y. ; Song X. ; Wu Q. ; Li L. ; Wu X. ; Wu T. ; Li M. ; Yang Q. ; et al Adv. Mater. 2019, 31, 1903683.
doi: 10.1002/adma.201903683 |
46 |
Kim J. ; Lee Y. ; Sun S. H. J. Am. Chem. Soc. 2010, 132, 14.
doi: 10.1021/ja1009629 |
47 |
Gamler J. T. L. ; Ashberry H. M. ; Skrabalak S. E. ; Koczkur K. M. Adv. Mater. 2018, 30, 40.
doi: 10.1002/adma.201801563 |
48 |
Li J. ; Xi Z. ; Pan Y. ; Spendelow Jacob S. ; Duchesne Paul N. ; Su D. ; Li Q. ; Yu C. ; Yin Z. ; Shen B. ; et al J. Am. Chem. Soc. 2018, 140, 2926.
doi: 10.1021/jacs.7b12829 |
49 |
Wang D. ; Xin H. L. ; Hovden R. ; Wang H. ; Yu Y. ; Muller D. A. ; DiSalvo F. J. ; Abruña H. D. Nat. Mater. 2012, 12, 81.
doi: 10.1038/nmat3458 |
50 |
Shim J. ; Lee J. ; Ye Y. ; Hwang J. ; Kim S. K. ; Lim T. H. ; Wiesner U. ; Lee J. ACS Nano 2012, 6, 8.
doi: 10.1021/nn301692y |
51 |
Zhang B.-W. ; Jiang Y.-X. ; Ren J. ; Qu X. -M. ; Xu G.-L. ; Sun S. -G. Electrochim. Acta 2015, 162, 254.
doi: 10.1016/j.electacta.2014.09.159 |
52 |
Zhang G. ; Yang Z. ; Zhang W. ; Hu H. ; Wang C. ; Huang C. ; Wang Y. Nanoscale 2016, 8, 3075.
doi: 10.1039/c5nr08013d |
53 |
Kim J. ; Rong C. ; Liu J. P. ; Sun S. Adv. Mater. 2009, 21, 906.
doi: 10.1002/adma.200801620 |
54 |
Kim J. ; Rong C. ; Lee Y. ; Liu J. P. ; Sun S. Chem. Mater. 2008, 20, 7242.
doi: 10.1021/cm8024878 |
55 |
Yu J. ; Gao W. ; Liu F. ; Ju Y. ; Zhao F. ; Yang Z. ; Chu X. ; Che S. ; Hou Y. Sci. China Mater. 2018, 61, 961.
doi: 10.1007/s40843-017-9203-9 |
56 |
Han A. ; Zhang J. ; Sun W. ; Chen W. ; Zhang S. ; Hang Y. ; Feng Q. ; Zheng L. ; Gu L. ; Chen C. ; et al Nat. Commun. 2019, 10, 3787.
doi: 10.1038/s41467-019-11794-6 |
57 |
Li Q. ; Wu L. ; Wu G. ; Su D. ; Lu H. ; Zhang S. ; Zhu W. ; Casimir A. ; Zhu H. ; Mendoza-Garcia A. ; et al Nano Lett. 2015, 15, 2468.
doi: 10.1021/acs.nanolett.5b00320 |
58 |
Zhang S. ; Guo S. ; Zhu H. ; Su D. ; Sun S. J. Am. Chem. Soc. 2012, 134, 5060.
doi: 10.1021/ja300708j |
59 |
Zhang S. ; Zhang X. ; Jiang G. ; Zhu H. ; Guo S. ; Su D. ; Lu G. ; Sun S. J. Am. Chem. Soc. 2014, 136, 7734.
doi: 10.1021/ja5030172 |
60 |
Bernal S. ; Calvino J. J. ; Gatica J. M. ; Larese C. ; López-Cartes C. ; Pérez-Omil J. A. J. Catal. 1997, 169, 510.
doi: 10.1006/jcat.1997.1707 |
61 |
Li Z. ; Qi Z. ; Wang S. ; Ma T. ; Zhou L. ; Wu Z. ; Luan X. ; Lin F. ; Chen M. ; Miller J. ; et al Nano Lett. 2019, 19, 5102.
doi: 10.1021/acs.nanolett.9b01381 |
62 |
Huang L. L. ; Liu M. ; Lin H. X. ; Xu Y. B. ; Wu J. S. ; Dravid V. P. ; Wolverton C. ; Mirkin C. A. Science 2019, 365, 1159.
doi: 10.1126/science.aax5843 |
63 |
Komatsu T. ; Mesuda M. ; Yashima T. Appl. Catal. A 2000, 194, 333.
doi: 10.1016/S0926-860X(99)00379-8 |
64 |
Saedy S. ; Palagin D. ; Safonova O. ; van Bokhoven J. A. ; Khodadadi A. A. ; Mortazavi Y. J. Mater. Chem. A 2017, 5, 24396.
doi: 10.1039/C7TA06737B |
65 |
Geisler A. H. ; Martin D. L. J. Appl. Phys. 1952, 23, 375.
doi: 10.1063/1.1702216 |
66 |
Na H. ; Choi H. ; Oh J. W. ; Jung Y. S. ; Cho Y. S. ACS Appl. Mater. Interfaces 2019, 11, 25179.
doi: 10.1021/acsami.9b06159 |
67 |
Chung D. ; Jun S. ; Yoon G. ; Kwon S. ; Shin D. ; Seo P. ; Yoo J. ; Shin H. ; Chung Y. ; Kim H. ; et al J. Am. Chem. Soc. 2015, 137, 15478.
doi: 10.1021/jacs.5b09653 |
68 |
Lim S. C. ; Chan C. Y. ; Chen K. T. ; Tuan H. Y. Electrochim. Acta 2019, 297, 288.
doi: 10.1016/j.electacta.2018.11.152 |
69 |
Lim S. C. ; Hsiao M. C. ; Lu M. D. ; Tung Y. L. ; Tuan H. Y. Nanoscale 2018, 10, 16657.
doi: 10.1039/c8nr03983f |
70 |
Maccio D. ; Rosalbino F. ; Saccone A. ; Delfino S. J. Alloys Compd. 2005, 391, 60.
doi: 10.1016/j.jallcom.2004.08.050 |
71 |
Strasser P. ; Kuhl S. Nano Energy 2016, 29, 166.
doi: 10.1016/j.nanoen.2016.04.047 |
72 |
Rößner L. ; Armbrüster M. ACS Catal. 2019, 9, 2018.
doi: 10.1021/acscatal.8b04566 |
73 |
Leidheiser H. J. Am. Chem. Soc. 1949, 71, 3634.
doi: 10.1021/ja01179a015 |
74 |
Wang X. X. ; Hwang S. ; Pan Y. T. ; Chen K. ; He Y. H. ; Karakalos S. ; Zhang H. G. ; Spendelow J. S. ; Su D. ; Wu G. Nano Lett. 2018, 18, 4163.
doi: 10.1021/acs.nanolett.8b00978 |
75 |
Gokhale R. ; Chen Y. C. ; Serov A. ; Artyushkova K. ; Atanassov P. Electrochim. Acta 2017, 224, 49.
doi: 10.1016/j.electacta.2016.12.052 |
76 |
Xiong Y. ; Xiao L. ; Yang Y. ; DiSalvo F. J. ; Abruna H. D. Chem. Mater. 2018, 30, 1532.
doi: 10.1021/acs.chemmater.7b04201 |
77 | Zhu H. ; Luo M. C. ; Cai Y. Z. ; Sun Z. N. Acta Phys. -Chim. Sin. 2016, 32, 2462. |
朱红; 骆明川; 蔡业政; 孙照男. 物理化学学报, 2016, 32, 2462.
doi: 10.3866/PKU.WHXB201606293 |
|
78 |
Kuttiyiel K. ; Kattel S. ; Cheng S. ; Lee J. ; Wu L. ; Zhu Y. ; Park G. ; Liu P. ; Sasaki K. ; Chen J. ; et al ACS Appl. Energy Mater. 2018, 1, 3771.
doi: 10.1021/acsaem.8b00555 |
79 |
Wang G. W. ; Huang B. ; Xiao L. ; Ren Z. D. ; Chen H. ; Wang D. L. ; Abruna H. D. ; Lu J. T. ; Zhuang L. J. Am. Chem. Soc. 2014, 136, 9643.
doi: 10.1021/ja503315s |
80 |
Xiao W. ; Cordeiro M. ; Gao G. ; Zheng A. ; Wang J. ; Lei W. ; Gong M. ; Lin R. ; Stavitski E. ; Xin H. ; et al Nano Energy 2018, 50, 70.
doi: 10.1016/j.nanoen.2018.05.032 |
81 |
Masuda T. ; Fukumitsu H. ; Fugane K. ; Togasaki H. ; Matsumura D. ; Tamura K. ; Matsumura D. ; Tamura K. ; Nishihata Y. ; Yoshikawa H. ; Kobayashi K. ; Mori T. ; et al J. Phys. Chem. C 2012, 116, 10098.
doi: 10.1021/jp301509t |
82 |
Sasaki K. ; Zhang L. ; Adzic R. R. Phys. Chem. Chem. Phys. 2008, 10, 159.
doi: 10.1039/b709893f |
83 |
Wang Y.-J. ; Zhao N. ; Fang B. ; Li H. ; Bi X. T. ; Wang H. Chem. Rev. 2015, 115, 3433.
doi: 10.1021/cr500519c |
84 |
Luo M. ; Sun Y. ; Wang L. ; Guo S. Adv. Energy Mater. 2017, 7, 11.
doi: 10.1002/aenm.201602073 |
85 |
Antolini E. Appl. Catal. B 2017, 217, 201.
doi: 10.1016/j.apcatb.2017.05.081 |
86 |
Liang J. ; Miao Z. ; Ma F. ; Pan R. ; Chen X. ; Wang T. ; Xie H. ; Li Q. Chin. J. Catal. 2018, 39, 583.
doi: 10.1016/S1872-2067(17)62989-9 |
87 |
Chen X. ; McCrum I. T. ; Schwarz K. A. ; Janik M. J. ; Koper M. T. M. Angew. Chem. Int. Ed. 2017, 56, 15025.
doi: 10.1002/anie.201709455 |
88 |
Park E. D. ; Lee D. ; Lee H. C. Catal. Today 2009, 139, 280.
doi: 10.1016/j.cattod.2008.06.027 |
89 |
Innocente A. F. ; Ângelo A. C. D. J. Power Sources 2008, 175, 779.
doi: 10.1016/j.jpowsour.2007.10.001 |
90 |
Liu Z. ; Jackson G. S. ; Eichhorn B. W. Energy Environ. Sci. 2011, 4, 1900.
doi: 10.1039/C1EE01125A |
91 |
Neurock M. ; Janik M. ; Wieckowski A. Faraday Discuss. 2009, 140, 363.
doi: 10.1039/B804591G |
92 |
Xu H. ; Yan B. ; Li S. ; Wang J. ; Wang C. ; Guo J. ; Du Y. Chem. Eng. J. 2018, 334, 2638.
doi: 10.1016/j.cej.2017.10.175 |
93 |
Zhu J. ; Zheng X. ; Wang J. ; Wu Z. ; Han L. ; Lin R. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2015, 3, 22129.
doi: 10.1039/C5TA05699C |
94 |
Ramesh G. V. ; Kodiyath R. ; Tanabe T. ; Manikandan M. ; Fujita T. ; Umezawa N. ; Ueda S. ; Ishihara S. ; Ariga K. ; Abe H. ACS Appl. Mater. Interfaces 2014, 6, 16124.
doi: 10.1021/am504147q |
95 |
Ghosh T. ; Zhou Q. ; Gregoire J. M. ; van Dover R. B. ; DiSalvo F. J. J. Phys. Chem. C 2010, 114, 12545.
doi: 10.1021/jp101175m |
96 |
Casado-Rivera E. ; Gál Z. ; Angelo A. C. D. ; Lind C. ; DiSalvo F. J. ; Abruña H. D. ChemPhysChem 2003, 4, 193.
doi: 10.1002/cphc.200390030 |
97 |
Ji X. ; Lee K. T. ; Holden R. ; Zhang L. ; Zhang J. ; Botton G. A. ; Couillard M. ; Nazar L. F. Nat. Chem. 2010, 2, 286.
doi: 10.1038/nchem.553 |
98 |
Casado-Rivera E. ; Volpe D. J. ; Alden L. ; Lind C. ; Downie C. ; Vázquez-Alvarez T. ; Angelo A. C. D. ; DiSalvo F. J. ; Abruña H. D. J. Am. Chem. Soc. 2004, 126, 4043.
doi: 10.1021/ja038497a |
99 |
Pan Y. -T. ; Yan Y. ; Shao Y. -T. ; Zuo J. -M. ; Yang H. Nano Lett. 2016, 16, 6599.
doi: 10.1021/acs.nanolett.6b03302 |
100 |
Kang Y. ; Murray C. B. J. Am. Chem. Soc. 2010, 132, 7568.
doi: 10.1021/ja100705j |
101 |
Ghosh T. ; Leonard B. M. ; Zhou Q. ; DiSalvo F. J. Chem. Mater. 2010, 22, 2190.
doi: 10.1021/cm9018474 |
102 |
Feng Y. ; Liu H. ; Yang J. Sci. Adv. 2017, 3, e1700580.
doi: 10.1126/sciadv.1700580 |
103 |
Sanetuntikul J. ; Ketpang K. ; Shanmugam S. ACS Catal. 2015, 5, 7321.
doi: 10.1021/acscatal.5b01390 |
104 |
Zhang B. ; Sheng T. ; Wang Y. ; Qu X. ; Zhang J. ; Zhang Z. ; Liao H. ; Zhu F. ; Dou S. ; Jiang Y. ; et al ACS Catal. 2017, 7, 892.
doi: 10.1021/acscatal.6b03021 |
105 |
Mikhailova A. A. ; Pasynskii A. A. ; Grinberg V. A. ; Velikodnyi Y. A. ; Khazova O. A. Russ. J. Electrochem. 2010, 46, 26.
doi: 10.1134/s1023193510010039 |
106 |
Herranz T. ; Ibáñez M. ; Gómez de la Fuente J. L. ; Pérez-Alonso F. J. ; Peña M. A. ; Cabot A. ; Rojas S. ChemElectroChem 2014, 1, 885.
doi: 10.1002/celc.201300254 |
107 |
Kwak D.-H. ; Lee Y. -W. ; Han S. -B. ; Hwang E. -T. ; Park H. -C. ; Kim M.-C. ; Park K. -W. J. Power Sources 2015, 275, 557.
doi: 10.1016/j.jpowsour.2014.11.050 |
108 |
Ramesh G. ; Kodiyath R. ; Tanabe T. ; Manikandan M. ; Fujita T. ; Matsumoto F. ; Ishihara S. ; Ueda S. ; Yamashita Y. ; Ariga K. ; et al ChemElectroChem 2014, 1, 728.
doi: 10.1002/celc.201300240 |
109 |
Sun Y. ; Liang Y. ; Luo M. ; Lv F. ; Qin Y. ; Wang L. ; Xu C. ; Fu E. ; Guo S. Small 2018, 14, 1702259.
doi: 10.1002/smll.201702259 |
110 |
Gunji T. ; Tanabe T. ; Jeevagan A. J. ; Usui S. ; Tsuda T. ; Kaneko S. ; Saravanan G. ; Abe H. ; Matsumoto F. J. Power Sources 2015, 273, 990.
doi: 10.1016/j.jpowsour.2014.09.182 |
111 |
Kodiyath R. ; Ramesh G. ; Koudelkova E. ; Tanabe T. ; Ito M. ; Manikandan M. ; Ueda S. ; Fujita T. ; Umezawa N. ; Noguchi H. ; et al Energy Environ. Sci. 2015, 8, 1685.
doi: 10.1039/C4EE03746D |
112 |
Nia N. S. ; Guillen-Villafuerte O. ; Griesser C. ; Manning G. ; Kunze-Liebhauser J. ; Arevalo C. ; Pastor E. ; Garcia G. ACS Catal. 2020, 10, 1113.
doi: 10.1021/acscatal.9b04348 |
113 |
Xue X. Z. ; Ge J. J. ; Tian T. ; Liu C. P. ; Xing W. ; Lu T. H. J. Power Sources 2007, 172, 560.
doi: 10.1016/j.jpowsour.2007.05.091 |
114 | Gao Z. F. ; Chen H. ; Qi S. T. ; Yin C. H. ; Yang B. L. Acta Phys. -Chim. Sin. 2013, 29, 1900. |
高子丰; 陈昊; 齐随涛; 伊春海; 杨伯伦. 物理化学学报, 2013, 29, 1900.
doi: 10.3866/PKU.WHXB201307021 |
|
115 |
Chen C. ; Zuo Y. X. ; Ye W. K. ; Li X. G. ; Deng Z. ; Ong S. P. Adv. Energy Mater. 2020, 10, 1903242.
doi: 10.1002/aenm.201903242 |
116 | Chen F. ; Yang Z. Y. ; Wen H. ; Xu Z. H. Acta Phys. -Chim. Sin. 1997, 13, 712. |
陈锋; 杨章远; 温浩; 许志宏. 物理化学学报, 1997, 13, 712.
doi: 10.3866/PKU.WHXB19970807 |
|
117 | Han M. R. ; Zhou Y. N. ; Zhou X. ; Chu W. Acta Phys. -Chim. Sin. 2019, 35, 850. |
韩萌茹; 周亚男; 周旋; 储伟. 物理化学学报, 2019, 35, 850.
doi: 10.3866/PKU.WHXB201811040 |
|
118 |
Toyao T. ; Maeno Z. ; Takakusagi S. ; Kamachi T. ; Takigawa I. ; Shimizu K.-I. ACS Catal. 2020, 10, 2260.
doi: 10.1021/acscatal.9b04186 |
119 |
Li Z. ; Ma X. F. ; Xin H. L. Catal. Today 2017, 280, 232.
doi: 10.1016/j.cattod.2016.04.013 |
120 |
Li Z. ; Wang S. W. ; Chin W. S. ; Achenie L. E. ; Xin H. L. J. Mater. Chem. A 2017, 5, 24131.
doi: 10.1039/c7ta01812f |
121 |
Tran K. ; Ulissi Z. W. Nat. Catal. 2018, 1, 696.
doi: 10.1038/s41929-018-0142-1 |
[1] | 赵亚楠, 何敏, 刘晓芳, 刘斌, 杨建辉. 金二元纳米晶超晶格的自组装和结构表征[J]. 物理化学学报, 2020, 36(9): 1908041 - . |
[2] | 刘志明, 刘国亮, 洪昕林. 表面缺陷与钯的沉积对硫化镉纳米晶粒的光催化制氢性能的影响[J]. 物理化学学报, 2019, 35(2): 215 -222 . |
[3] | 卢秀利,韩莹莹,鲁统部. 石墨炔结构表征及在光电催化反应中的应用[J]. 物理化学学报, 2018, 34(9): 1014 -1028 . |
[4] | 骆明川, 孙英俊, 秦英楠, 杨勇, 吴冬, 郭少军. 维度调控策略提升铂基纳米晶氧还原催化研究进展[J]. 物理化学学报, 2018, 34(4): 361 -376 . |
[5] | 阮毛毛,宋乐新,王青山,夏娟,杨尊,滕越,许哲远. 纳米片自组装的(BiO)2CO3单分散微米绒球的绿色可控合成及其光催化性能[J]. 物理化学学报, 2017, 33(5): 1033 -1042 . |
[6] | 周晓琴,张辉,张泽,陈新,金传洪. 用原位液体池透射电镜技术表征金属钯在球形金纳米颗粒表面的异质沉积[J]. 物理化学学报, 2017, 33(3): 458 -463 . |
[7] | 王亚楠,马品,彭路梅,张迪,方艳艳,周晓文,林原. 醋酸铅作为铅源合成CH3NH3PbBr3-xClx纳米晶体颗粒[J]. 物理化学学报, 2017, 33(10): 2099 -2105 . |
[8] | 刘为燕,李亚东,刘甜,干林. 单分散铁氧体纳米颗粒的生长机制与成分偏聚的透射电子显微研究[J]. 物理化学学报, 2017, 33(10): 2106 -2112 . |
[9] | 许瀚,童叶翔,李高仁. Pd纳米晶的调控合成及其在燃料电池中的应用[J]. 物理化学学报, 2016, 32(9): 2171 -2184 . |
[10] | 徐正侠,杨继涛,刘康,郭小强. 溶剂热法合成锐钛矿型二氧化钛纳米晶的形状演化规律[J]. 物理化学学报, 2016, 32(2): 581 -588 . |
[11] | 寇艳蕾, 曲胜春, 刘孔, 池丹, 卢树弟, 李彦沛, 岳世忠. Cd基化合物纳米晶-有机聚合物杂化太阳能电池研究进展[J]. 物理化学学报, 2015, 31(5): 807 -816 . |
[12] | 钱阳, 徐江. 钛合金双极板表面纳米晶Zr涂层在质子交换膜燃料电池环境中的性能[J]. 物理化学学报, 2015, 31(2): 291 -301 . |
[13] | 热依莎·多里坤, 阳耀月, 蔡文斌. Pt纳米晶上CO电吸附及电氧化的表面增强红外吸收光谱研究[J]. 物理化学学报, 2015, 31(2): 199 -203 . |
[14] | 林雪, 于丽丽, 闫丽娜, 关庆丰, 闫永胜, 赵晗. 球形、花形和线状钒酸铋的可控合成及光催化性能[J]. 物理化学学报, 2013, 29(08): 1771 -1777 . |
[15] | 朱艳艳, 刘艳芳, 吕艳辉, 王华, 凌强, 朱永法. 回流法可控合成BiPO4纳米棒及其光催化性能[J]. 物理化学学报, 2013, 29(03): 576 -584 . |
|