物理化学学报 >> 2021, Vol. 37 >> Issue (10): 2004071.doi: 10.3866/PKU.WHXB202004071
收稿日期:
2020-04-27
录用日期:
2020-05-15
发布日期:
2020-05-20
通讯作者:
任宁,张建军
E-mail:ningren9@163.com;jjzhang6@126.com
基金资助:
Mengxue Zhou1,2, Ning Ren3,*(), Jianjun Zhang1,2,*()
Received:
2020-04-27
Accepted:
2020-05-15
Published:
2020-05-20
Contact:
Ning Ren,Jianjun Zhang
E-mail:ningren9@163.com;jjzhang6@126.com
About author:
Email: jjzhang6@126.com (Z.J.); Tel.: +86-311-80786457 (Z.J.)Supported by:
摘要:
利用2, 4, 6-三甲基苯甲酸和5, 5'-二甲基-2, 2'-联吡啶配体在溶剂热的条件下成功合成出系列三元稀土超分子配合物[Ln(2, 4, 6-TMBA)3(5, 5'-DM-2, 2'-bipy)]2 (Ln = Pr 1, Nd 2, Sm 3, Eu 4, Gd 5, Dy 6),并对其进行了单晶X-射线衍射、元素分析、热重分析等一系列表征。研究结果表明配合物1-5同构,中心离子的配位数为9,配合物通过π–π堆积作用形成一维、二维的超分子结构。配合物6具有不同的结构,中心镝离子的配位数为8,分子间通过π–π堆积作用和C-H···O氢键形成一维、二维的超分子结构。利用TG/FTIR技术研究了配合物的热稳定性和热分解机理,荧光光谱表明配合物4可以发射出Eu3+离子的特征荧光,同时对配合物6的磁性进行了初步探究。
周孟雪, 任宁, 张建军. 2, 4, 6-三甲基苯甲酸与5, 5'-二甲基-2, 2'-联吡啶构筑的系列镧系超分子配合物的晶体结构、热分解机理和性能[J]. 物理化学学报, 2021, 37(10), 2004071. doi: 10.3866/PKU.WHXB202004071
Mengxue Zhou, Ning Ren, Jianjun Zhang. Crystal Structure, Thermal Decomposition Mechanism and Properties of Lanthanide Supramolecular Complexes Based on 2, 4, 6-Trimethylbenzoic Acid and 5, 5'-Dimethyl-2, 2'-bipyridine[J]. Acta Phys. -Chim. Sin. 2021, 37(10), 2004071. doi: 10.3866/PKU.WHXB202004071
Table 1
Crystal data and structure refinement for complexes 1–6 (1 ? = 0.1 nm)."
Complex | 1 | 2 | 3 |
Empirical formula | C84H90N4O12Pr2 | C84H90N4O12Nd2 | C84H90N4O12Sm2 |
Formula weight/(g·mol-1) | 1629.42 | 1636.08 | 1648.30 |
Temperature/K | 298(2) | 298(2) | 298(2) |
Wavelength/? | 0.71073 | 0.71073 | 0.71073 |
Crystal system | Triclinic | Triclinic | Triclinic |
Space group | P ī | P ī | P ī |
Unit cell dimensions | |||
a/? | 12.4109 (11) | 12.1605 (13) | 12.3684 (11) |
b/? | 13.4486 (12) | 13.1382 (13) | 13.3244 (11) |
c/? | 13.4944 (13) | 13.2316 (14) | 13.4910 (12) |
α/(°) | 107.863 (3) | 107.790 (2) | 107.653 (2) |
β/(°) | 108.458 (3) | 108.686 (2) | 108.945 (2) |
γ/(°) | 91.858 (2) | 91.7080 (10) | 91.5490 (10) |
Volume/?3 | 2012.4 (3) | 1887.6 (3) | 1984.4 (3) |
Z, calculated density/(mg·m-3) | 1, 1.344 | 1, 1.439 | 1, 1.379 |
Absorption coefficient/mm-1 | 1.257 | 1.425 | 1.526 |
F(000) | 836 | 838 | 842 |
Crystal size/mm3 | 0.13 × 0.08 × 0.05 | 0.16 × 0.08 × 0.06 | 0.15 × 0.08 × 0.05 |
Theta range for data collection/(°) | 2.34 to 25.02 | 2.38 to 25.02 | 2.34 to 25.02 |
Limiting indices | -14 ≤ h ≤ 14 | -14 ≤ h ≤ 14 | -14 ≤ h ≤ 14 |
-15 ≤ k ≤ 15 | -11 ≤ k ≤ 15 | -15 ≤ k ≤ 15 | |
-12 ≤ l ≤ 16 | -15 ≤ l ≤ 15 | -10 ≤ l ≤ 16 | |
Reflections collected/unique | 10173/6956 | 9719/6570 | 10125/6888 |
[R(int) = 0.0564] | [R(int) = 0.0655] | [R(int) = 0.0494] | |
Completeness to theta = 25.02° | 98.3% | 98.5% | 98.5% |
Max. and min. transmission | 0.9398 and 0.8537 | 0.9194 and 0.8041 | 0.9276 and 0.8034 |
Data/restraints/parameters | 6956/0/460 | 6570/0/471 | 6888/0/471 |
Goodness-of-fit on F2 | 1.072 | 1.033 | 1.014 |
Final R indices [I > 2σ(I)] | R1 = 0.0681 | R1 = 0.0650 | R1 = 0.0533 |
wR2 = 0.1529 | wR2 = 0.1490 | wR2 = 0.0929 | |
R indices (all data) | R1 = 0.0929 | R1 = 0.0901 | R1 = 0.0832 |
wR2 = 0.1634 | wR2 = 0.1621 | wR2 = 0.1004 | |
Complex | 4 | 5 | 6 |
Empirical formula | C84H90N4O12Eu2 | C84H90N4O12Gd2 | C252H270N12O36Dy6 |
Formula weight/(g·mol-1) | 1651.52 | 1662.10 | 5017.80 |
Temperature/K | 298 (2) | 298 (2) | 298 (2) |
Wavelength/? | 0.71073 | 0.71073 | 0.71073 |
Crystal system | Triclinic | Triclinic | Triclinic |
Space group | P ī | P ī | P ī |
Unit cell dimensions | |||
a/? | 12.3030 (11) | 11.8539 (12) | 13.8471 (12) |
b/? | 13.1940 (12) | 12.6869 (13) | 16.3534 (14) |
c/? | 13.4110 (12) | 12.9280 (14) | 28.649 (3) |
α/(°) | 107.599 (2) | 107.535 (3) | 78.807 (2) |
β/(°) | 109.113 (4) | 109.358 (3) | 77.3610 (10) |
γ/(°) | 91.4870 (10) | 91.3950 (10) | 78.530 (2) |
Volume/?3 | 1941.7 (3) | 1732.3 (3) | 6126.5 (9) |
Z, calculated density/(mg·m-3) | 1, 1.412 | 1, 1.593 | 1, 1.360 |
Absorption coefficient/mm-1 | 1.663 | 1.968 | 1.875 |
F(000) | 844 | 846 | 2550 |
Crystal size/mm3 | 0.20 × 0.11 × 0.10 | 0.11 × 0.07 × 0.04 | 0.41 × 0.37 × 0.13 |
Theta range for data collection/(°) | 2.36 to 25.02 | 2.67 to 25.02 | 2.30 to 25.02 |
Limiting indices | -14 ≤ h ≤14 | -7 ≤ h ≤ 14 | -8 ≤ h ≤ 16 |
-15 ≤ k ≤ 15 | -14 ≤ k ≤ 15 | -18 ≤ k ≤ 19 | |
-15 ≤ l ≤ 12 | -15 ≤ l ≤ 14 | -34 ≤ l ≤ 33 | |
Reflections collected/unique | 9927/6752 | 8934/6028 | 31411/21320 |
[R(int) = 0.0280] | [R(int) = 0.1072] | [R(int) = 0.0620] | |
Completeness to theta = 25.02° | 98.5% | 98.9% | 98.5% |
Data/restraints/parameters | 6752/0/471 | 6028/0/471 | 21320/37/1378 |
Goodness-of-fit on F2 | 1.025 | 1.082 | 0.778 |
Final R indices [I > 2σ(I)] | R1 = 0.0369 | R1 = 0.0917 | R1 = 0.0592 |
wR2 = 0.0688 | wR2 = 0.2045 | wR2 = 0.0973 | |
R indices (all data) | R1 = 0.0532 | R1 = 0.1293 | R1 = 0.1234 |
wR2 = 0.0744 | wR2 = 0.2209 | wR2 = 0.1125 | |
Largest diff. peak and hole (e·?-3) | 1.858 and -0.644 | 2.959 and -2.296 | 2.028 and -0.891 |
Largest diff. peak and hole (e·?-3) | 2.276 and -1.794 | 1.922 and -1.438 | 1.357 and -0.851 |
Table 2
The main bond lengths for complexes 1–6."
Pr(1) | Bond length/? | Nd(2)Ln-O/? | Bond length/? | Sm(3) | Bond length/? | |
Ln-O | Pr(1)-O(1) | 2.461 | Nd(1)-O(1) | 2.401 | Sm(1)-O(1) | 2.396 |
Pr(1)-O(2) | 2.581 | Nd(1)-O(2) | 2.515 | Sm(1)-O(2)#1 | 2.403 | |
Pr(1)-O(3) | 2.455 | Nd(1)-O(3) | 2.380 | Sm(1)-O(3) | 2.366 | |
Pr(1)-O(4)#1 | 2.458 | Nd(1)-O(4)#1 | 2.383 | Sm(1)-O(4)#1 | 2.574 | |
Pr(1)-O(5) | 2.440 | Nd(1)-O(5) | 2.374 | Sm(1)-O(5) | 2.402 | |
Pr(1)-O(6)#1 | 2.617 | Nd(1)-O(6)#1 | 2.557 | Sm(1)-O(6) | 2.528 | |
Pr(1)-O(5)#1 | 2.702 | Nd(1)-O(5)#1 | 2.633 | Sm(1)-O(3)#1 | 2.666 | |
Average Ln-O | 2.531 | 2.463 | 2.476 | |||
Ln-N | Pr(1)-N(1) | 2.722 | Nd(1)-N(1) | 2.646 | Sm(1)-N(1) | 2.677 |
Pr(1)-N(2) | 2.737 | Nd(1)-N(2) | 2.678 | Sm(1)-N(2) | 2.694 | |
Average Ln-N | 2.730 | 2.662 | 2.686 | |||
Eu(4) | Bond length/? length/? | Gd(5) | Bond length/? | Dy(6) | Bond length/? | |
Ln-O | Eu(1)-O(1) | 2.367 | Gd(1)-O(1) | 2.271 | Dy(1)-O(1) | 2.394 |
Eu(1)-O(2)#1 | 2.372 | Gd(1)-O(2)#1 | 2.288 | Dy(1)-O(3) | 2.274 | |
Eu(1)-O(3) | 2.346 | Gd(1)-O(3) | 2.246 | Dy(1)-O(5) | 2.374 | |
Eu(1)-O(4)#1 | 2.535 | Gd(1)-O(4)#1 | 2.417 | Dy(1)-O(7) | 2.326 | |
Eu(1)-O(5) | 2.381 | Gd(1)-O(5) | 2.276 | Dy(1)-O(9) | 2.409 | |
Eu(1)-O(6) | 2.503 | Gd(1)-O(6) | 2.413 | Dy(1)-O(10) | 2.461 | |
Eu(1)-O(3)#1 | 2.651 | Gd(1)-O(3)#1 | 2.566 | |||
Average Ln-O | 2.451 | 2.354 | 2.373 | |||
Ln-N | Eu(1)-N(1) | 2.637 | Gd(1)-N(1) | 2.501 | Dy(1)-N(1) | 2.565 |
Eu(1)-N(2) | 2.668 | Gd(1)-N(2) | 2.571 | Dy(1)-N(2) | 2.588 | |
Average Ln-N | 2.653 | 2.536 | 2.577 |
Table 3
Thermal data for the complexes 1-6 at pressure 101.3 kPa."
Step | Temperature range/K | DTG Tp/K | Mass loss rate/% | Probable expelled groups | Intermediate and residue | ||
Found | Calcd. | ||||||
1 | Ⅰ | 454.15–555.15 | 512.95 | 22.59 | 22.61 a | 2(5, 5'-DM-2, 2'-dipy) | [Pr2(2, 4, 6-TMBA)6] |
Ⅱ | 555.15–678.15 | 630.05 | 32.20 | x 2, 4, 6-TMBA | [Pr2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 678.15–716.15 | 690.95 | 4.50 | у 2, 4, 6-TMBA | [Pr2(2, 4, 6-TMBA)6-x-у] | ||
Ⅳ | 716.15–873.15 | 761.35 | 19.80 | 56.49 b | (6-x-y) 2, 4, 6-TMBA | Pr6O11 | |
79.09 | 79.10 c | ||||||
2 | Ⅰ | 457.15–554.15 | 507.35 | 22.22 | 22.52 a | 2(5, 5'-DM-2, 2'-dipy) | [Nd2(2, 4, 6-TMBA)6] |
Ⅱ | 554.15–681.15 | 633.35 | 32.28 | x 2, 4, 6-TMBA | [Nd2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 681.15–716.15 | 689.75 | 4.78 | у 2, 4, 6-TMBA | [Nd2(2, 4, 6-TMBA) 6-x-у] | ||
Ⅳ | 716.15–973.15 | 752.85 | 18.91 | 56.91 b | (6-x-y) 2, 4, 6-TMBA | Nd2O3 | |
78.19 | 79.43 c | ||||||
3 | Ⅰ | 455.15–548.15 | 496.45 | 22.26 | 22.35 a | 2(5, 5'-DM-2, 2'-dipy) | [Sm2(2, 4, 6-TMBA)6] |
Ⅱ | 548.15–682.15 | 632.45 | 33.07 | x 2, 4, 6-TMBA | [Sm2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 682.15–731.15 | 691.85 | 8.21 | у 2, 4, 6-TMBA | [Sm2(2, 4, 6-TMBA)6-x-у] | ||
Ⅳ | 731.15–973.15 | 763.25 | 15.19 | 56.49 b | (6-x-y) 2, 4, 6-TMBA | Sm2O3 | |
78.73 | 78.84 c | ||||||
4 | Ⅰ | 456.15–547.15 | 497.25 | 22.16 | 22.31 a | 2(5, 5'-DM-2, 2'-dipy) | [Eu2(2, 4, 6-TMBA)6] |
Ⅱ | 547.15–647.15 | 615.85 | 26.76 | x 2, 4, 6-TMBA | [Eu2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 647.15–675.15 | 658.95 | 5.65 | у 2, 4, 6-TMBA | [Eu2(2, 4, 6-TMBA) 6-x-у] | ||
Ⅳ | 675.15–973.15 | 710.45 | 23.86 | 56.38 b | (6-x-y) 2, 4, 6-TMBA | Eu2O3 | |
78.43 | 78.69 c | ||||||
5 | Ⅰ | 454.15–548.15 | 485.15 | 22.11 | 22.12 a | 2(5, 5'-DM-2, 2'-dipy) | [Gd2(2, 4, 6-TMBA)6] |
Ⅱ | 548.15–682.15 | 633.45 | 32.11 | x 2, 4, 6-TMBA | [Gd2(2, 4, 6-TMBA)6-x] | ||
Ⅲ | 682.15–737.15 | 693.05 | 9.39 | у 2, 4, 6-TMBA | [Gd2(2, 4, 6-TMBA) 6-x-у] | ||
Ⅳ | 737.15–973.15 | 764.25 | 14.10 | 56.11 b | (6-x-y) 2, 4, 6-TMBA | Gd2O3 | |
77.71 | 78.23 c | ||||||
6 | Ⅰ | 432.15–460.15 | 456.85 | 5.15 | x (5, 5'-DM-2, 2'-dipy) | [Dy2(2, 4, 6-TMBA)6(5, 5'-DM-2, 2'-dipy)2-x] | |
Ⅱ | 460.15–540.15 | 469.25 | 16.95 | 22.03 a | 2-x (5, 5'-DM-2, 2'-dipy) | [Dy2(2, 4, 6-TMBA)6] | |
Ⅲ | 540.15–687.15 | 621.25 | 29.97 | y 2, 4, 6-TMBA | [Dy2(2, 4, 6-TMBA)6-y] | ||
Ⅳ | 687.15–736.15 | 702.45 | 8.22 | z 2, 4, 6-TMBA | [Dy2(2, 4, 6-TMBA)6-y-z] | ||
Ⅴ | 736.15–873.15 | 763.85 | 15.99 | 55.67 b | (6-y-z) 2, 4, 6-TMBA | Dy2O3 | |
76.28 | 77.70 c |
1 |
Janicki R. ; Mondry A. ; Starynowicz P. Coordin. Chem. Rev 2017, 340, 98.
doi: 10.1016/j.ccr.2016.12.001 |
2 |
Allendorf M. D. ; Bauer C. A. ; Bhakta R. K. ; Houk R. J. Chem. Soc. Rev. 2009, 38 (5), 1330.
doi: 10.1039/b802352m |
3 |
Ahmed Z. ; Iftikhar K. Inorg. Chem. 2015, 54 (23), 11209.
doi: 10.1021/acs.inorgchem.5b01630 |
4 |
Bradberry S. J. ; Savyasachi A. J. ; Martinez-Calvo M. ; Gunnlaugsson T. Coordin. Chem. Rev. 2014, 273-274, 226.
doi: 10.1016/j.ccr.2014.03.023 |
5 |
Bunzli J. C. ; Piguet C. Chem. Soc. Rev. 2005, 34 (12), 1048.
doi: 10.1039/b406082m |
6 |
Hiller M. ; Krieg S. ; Ishikawa N. ; Enders M. Inorg. Chem. 2017, 56 (24), 15285.
doi: 10.1021/acs.inorgchem.7b02704 |
7 |
Lin P. H. ; Burchell T. J. ; Clerac R. ; Murugesu M. Angew. Chem. Int. Ed. Engl. 2008, 47 (46), 8848.
doi: 10.1002/anie.200802966 |
8 |
Reis S. G. ; Briganti M. ; Soriano S. ; Guedes G. P. ; Calancea S. ; Tiseanu C. Inorg. Chem. 2016, 55 (22), 11676.
doi: 10.1021/acs.inorgchem.6b01616 |
9 |
Rinehart J. D. ; Long J. R. Chem. Sci. 2011, 2 (11), 2078.
doi: 10.1039/c1sc00513h |
10 |
Wang G. ; Song T. ; Fan Y. ; Xu J. ; Wang M. ; Wang L. Inorg. Chem. Commun. 2010, 13 (1), 95.
doi: 10.1016/j.inoche.2009.10.026 |
11 |
Niu Y. ; Xu Q. ; Wang Y. ; Li Z. ; Lu J. ; Ma P. Dalton Trans. 2018, 47 (29), 9677.
doi: 10.1039/c8dt01243a |
12 |
Wang W. ; Wang X. ; Zhou S. ; Xu X. ; Du J. ; Zhang L. Inorg. Chem. 2018, 57 (16), 10390.
doi: 10.1021/acs.inorgchem.8b01556 |
13 |
Li Y. J. ; Yan B. Inorg. Chem. 2009, 48 (17), 8276.
doi: 10.1021/ic900971h |
14 |
Heffern M. C. ; Matosziuk L. M. ; Meade T. J. Chem. Rev. 2014, 114 (8), 4496.
doi: 10.1021/cr400477t |
15 |
Bünzli J. C. G. J. Lumin. 2016, 170, 866.
doi: 10.1016/j.jlumin.2015.07.033 |
16 |
Zhao Q. Q. ; Zhu M. M. ; Ren N. ; Zhang J. J. J. Mol. Struct. 2017, 1149, 171.
doi: 10.1016/j.molstruc.2017.07.080 |
17 |
Monteiro J. H. S. K. ; Sigoli F. A. ; de Bettencourt-Dias A. Can. J. Chem. 2018, 96 (9), 859.
doi: 10.1139/cjc-2017-0436 |
18 |
Jin C. W. ; Wang Y. ; Ren N. ; Geng L. N. ; Zhang J. J. J. Chem. Thermodyn. 2016, 103, 181.
doi: 10.1016/j.jct.2016.08.011 |
19 |
Wu J. ; Li H. ; Ren N. ; Zhang J. ; Wang S. J. Rare Earths 2016, 34 (11), 1083.
doi: 10.1016/s1002-0721(16)60138-2 |
20 |
Xia C. K. ; Sun W. ; Min Y. Y. ; Yang K. ; Wu Y. L. Polyhedron 2018, 141, 377.
doi: 10.1016/j.poly.2017.11.011 |
21 |
Utochnikova V. V. ; Grishko A. ; Vashchenko A. ; Goloveshkin A. ; Averin A. ; Kuzmina N. Eur. J. Inorg. Chem. 2017, 2017 (48), 5635.
doi: 10.1002/ejic.201700896 |
22 |
He S. M. ; Sun S. J. ; Zheng J. R. ; Zhang J. J. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 123, 211.
doi: 10.1016/j.saa.2013.12.023 |
23 |
Carter K. P. ; Pope S. J. A. ; Cahill C. L. CrystEngComm 2014, 16 (10), 1873.
doi: 10.1039/c3ce42267d |
24 |
Zapała L. ; Kosińska M. ; Woźnicka E. ; Byczyński Ł. ; Zapała W. ; Kalembkiewicz J. J. Anal. Appl. Pyrol. 2017, 123, 1.
doi: 10.1016/j.jaap.2017.01.010 |
25 |
Gao H. L. ; Huang S. X. ; Zhou X. P. ; Liu Z. ; Cui J. Z. Dalton Trans 2018, 47 (10), 3503.
doi: 10.1039/c8dt00063h |
26 |
Kariem M. ; Yawer M. ; Kumar M. ; Nawaz Sheikh H. ; Sood P. ; Kolekar S. S. J. Solid. State. Chem. 2017, 255, 61.
doi: 10.1016/j.jssc.2017.08.001 |
27 |
Shen P. P. ; Zhu M. M. ; Ren N. ; Zhang J. J. ; Wang S. P. Appl. Organomet. Chem. 2017, 31 (12), e3886.
doi: 10.1002/aoc.3886 |
28 |
Xie H. ; Lu G. J. Rare Earths 2013, 31 (6), 639.
doi: 10.1016/s1002-0721(12)60334-2 |
29 |
Zhao Y. F. ; Chu H. B. ; Bai F. ; Gao D. Q. ; Zhang H. X. ; Zhou Y. S. J. Organomet. Chem. 2012, 716, 167.
doi: 10.1016/j.jorganchem.2012.06.031 |
30 |
Shen C. Q. ; Yan T. L. ; Wang Y. T. ; Ye Z. J. ; Xu C. J. ; Zhou W. J. J. Lumin. 2017, 184, 48.
doi: 10.1016/j.jlumin.2016.12.018 |
31 |
Zhu M. M. ; Ren N. ; Zhang J. J. Inorg. Chim. Acta 2018, 480, 140.
doi: 10.1016/j.ica.2018.05.022 |
32 |
Bünzli J. C. G. ; Chauvin A. S. ; Kim H. K. ; Deiters E. ; Eliseeva S. V. Coordin. Chem. Rev. 2010, 254 (21-22), 2623.
doi: 10.1016/j.ccr.2010.04.002 |
33 |
Wei X. H. ; Yang L. Y. ; Liao S. Y. ; Zhang M. ; Tian J. L. ; Du P. Y. Dalton Trans. 2014, 43 (15), 5793.
doi: 10.1039/c3dt53112k |
[1] | 陈鲜红, 阮鹏超, 吴贤文, 梁叔全, 周江. 水系锌二次电池MnO2正极的晶体结构、反应机理及其改性策略[J]. 物理化学学报, 2022, 38(11): 2111003 - . |
[2] | 荆子君, Khai Chen Tan, 何腾, 于洋, 裴启俊, 王金涛, Wu Hui, 陈萍. 吡咯锂的合成、表征及晶体结构[J]. 物理化学学报, 2021, 37(11): 2009039 - . |
[3] | 任宁,王昉,张建军,郑新芳. 热分析动力学研究方法的新进展[J]. 物理化学学报, 2020, 36(6): 1905062 - . |
[4] | 覃方红, 万婷, 邱江源, 王一惠, 肖碧源, 黄在银. 基于光微热量-荧光光谱联用技术研究光催化热力学和动力学的温度效应[J]. 物理化学学报, 2020, 36(6): 1905087 - . |
[5] | 黎建,林聪,林建华,孙俊良. X射线晶体学结合电子晶体学在复杂无机晶体结构解析中的应用[J]. 物理化学学报, 2020, 36(1): 1907052 - . |
[6] | 曹丹丹, 吕荣, 于安池. 高光学质量氮化碳薄膜的制备和表征[J]. 物理化学学报, 2019, 35(4): 442 -450 . |
[7] | 谢安,王芝,吴荞宇,程丽萍,骆耿耿,孙頔. 夹心三明治结构的二十五核银硫簇合物[Ag25(SC6H4Pri)18 (dppp)6](CF3SO3)7·CH3CN:结构表征及光学性能[J]. 物理化学学报, 2018, 34(7): 776 -780 . |
[8] | 郑有坤,姜晖,王雪梅. 多策略可控合成原子精度合金纳米团簇[J]. 物理化学学报, 2018, 34(7): 740 -754 . |
[9] | 韩雪,杨进,刘莹莹,马建方. 三氮唑取代杯[4]芳烃配位聚合物的合成与荧光性能[J]. 物理化学学报, 2018, 34(5): 476 -482 . |
[10] | 赵顺省,李兰兰,刘向荣,丁作成,杨再文. 三种2-羟基-1-萘醛酰腙的晶体结构、热分解及其与CT-DNA的相互作用[J]. 物理化学学报, 2017, 33(2): 356 -363 . |
[11] | 郑晓頔,朱艳丽,董睿,焦清介. 烷基咪唑离子液体CnmimCl(n=4, 6, 8)对CL-20重结晶的影响[J]. 物理化学学报, 2016, 32(8): 1950 -1959 . |
[12] | 张恒,于惠梅,徐朝和,张明辉,潘秀红,高彦峰. 石墨烯氧化过程中的热分析-质谱以及脉冲热分析方法研究[J]. 物理化学学报, 2016, 32(7): 1634 -1638 . |
[13] | 霍建霞,宋素伟,靳成伟,任宁,耿丽娜,张建军. 配合物[Eu(4-MOBA)3(terpy)(H2O)]2的合成、表征、热分解机理及性质[J]. 物理化学学报, 2016, 32(4): 901 -906 . |
[14] | 李博轩,郭前进,夏安东. 离子液体[bmim][PF6]与[moemim][PF6]结构微不均匀性以及微粘度的光谱探测[J]. 物理化学学报, 2015, 31(8): 1452 -1460 . |
[15] | 陈晨,逯丹凤,程进,祁志美. 银膜表面等离子体耦合辐射特性的仿真分析[J]. 物理化学学报, 2015, 31(11): 2023 -2028 . |
|