物理化学学报 >> 2021, Vol. 37 >> Issue (7): 2009074.doi: 10.3866/PKU.WHXB202009074
所属专题: 电催化
徐冰妍1, 张应1, 皮业灿2, 邵琪2, 黄小青1,*()
收稿日期:
2020-09-23
录用日期:
2020-10-26
发布日期:
2020-10-30
通讯作者:
黄小青
E-mail:hxq006@xmu.edu.cn
作者简介:
Dr. Xiaoqing Huang is currently a professor at College of Chemistry and Chemical Engineering, Xiamen University. He obtained his B.Sc. in chemistry education from Southwest Normal University (2005) and Ph.D. in organic chemistry from Xiamen University (2011). His current research interests are in the design of nanoscale materials for heterogenous catalysis, electrocatalysis, energy conversion and beyond
基金资助:
Bingyan Xu1, Ying Zhang1, Yecan Pi2, Qi Shao2, Xiaoqing Huang1,*()
Received:
2020-09-23
Accepted:
2020-10-26
Published:
2020-10-30
Contact:
Xiaoqing Huang
E-mail:hxq006@xmu.edu.cn
About author:
Xiaoqing Huang, Email:hxq006@xmu.edu.cnSupported by:
摘要:
作为未来最有潜力的制氢技术之一,电解水为解决环境污染和能源危机等问题提供了一种有效的解决途径。然而,阳极析氧反应缓慢的动力学和较高的过电位使其成为电解水装置效率提升的主要瓶颈。因此,开发高活性和高稳定性的析氧反应催化剂对于电解水技术的发展具有重要意义。近年来,镍基金属有机框架材料因其具有丰富可调的拓扑结构、较大的比表面积以及多孔特性,在催化领域受到了越来越多的关注。本文综述了镍基金属有机框架及其衍生材料在析氧催化研究中的最新进展。首先简要介绍了镍基材料在析氧反应中的原理及评价析氧催化剂活性的一些重要参数,并列举了几种镍基金属有机框架材料的结构及其在催化中的优势。随后,结合近年来发表的文献,对单金属、双金属和三金属镍基金属有机框架材料及其衍生物在析氧催化中的研究进展进行了总结与讨论,重点分析了该类材料的设计策略和催化机理。最后对该领域目前所面临的主要挑战以及未来的发展趋势进行了总结与展望。
徐冰妍, 张应, 皮业灿, 邵琪, 黄小青. 镍基金属有机框架及其衍生物在电催化析氧反应中的研究进展[J]. 物理化学学报, 2021, 37(7), 2009074. doi: 10.3866/PKU.WHXB202009074
Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis[J]. Acta Phys. -Chim. Sin. 2021, 37(7), 2009074. doi: 10.3866/PKU.WHXB202009074
Table 1
Mechanism of OER reaction in acidic and alkaline electrolytes."
Acidic electrolyte | Alkaline electrolyte |
* + H2O → OH* + H+ + e− | * + OH− → OH* + e− |
OH* → O* + H+ + e− | OH* + OH− → O* + H2O + e− |
O* + H2O → OOH* + H+ + e− | O* + OH− → OOH* + e− |
OOH* → O2 + H+ + e− + * | OOH*+ OH− → O2 + H2O + e− + * |
Fig 1
Crystal structures of (a) MOF-74 30, (b) MIL-53 32 and (d) MIL-101 32. (c) Ball-and-stick model of secondary building units of MIL-101 32. (e) 4, 4'-bipyridine as molecular building block for 2D MOF 34. (a) Adapted from Royal Society of Chemistry publisher 30. (b, c) Adapted from Royal Society of Chemistry publisher 32. (e) Adapted from Wiley-VCH publisher 34. "
Fig 2
(a) Synthesis of Ni-BDC/Ni(OH)2 41; (b) synthesis of Fe2O3@Ni-MOF-74 31; (c) synthesis of Ni@NC 42; (d) synthesis of Ni-BDC@NiS 43; (e) synthesis of Ni2P/rGO 44. (a) Adapted from Royal Society of Chemistry publisher 41. (b) Adapted from American Chemical Society publisher 31. (c) Adapted from WILEY-VCH publisher 42. (d) Adapted from American Chemical Society publisher 43. (e) Adapted from Royal Society of Chemistry publisher 44. "
Fig 3
(a) Schematic diagram of the conversion of part Ni-MOF to Ni(OH)2 after the OER 10; (b) OER LSV curves of NF, Ni-MOF, AB & Ni-MOF with different ratios 10; (c) ECSA of Ni-MOF on different substrates 10; (d, e) theoretical calculation of Pt-NC/Ni-MOF heterostructure 48; (f) TEM image of 2D MOF/Ni(OH)2 nanosheets 41; (g) interaction between Ni(OH)2 and Ni-BDC 41; (h) LSV curves and (i) overpotentials of Ni-BDC/Ni(OH)2, Ni(OH)2, Ni-BDC and Ir/C 41. (a–c) Adapted from American Chemical Society publisher 10. (d, e) Adapted from Elsevier publisher 48. (f–i) Adapted from Royal Society of Chemistry publisher 41. "
Fig 4
(a) The illustration of the synthesis of 2D Ni-MOF nanosheet arrays on NF 49; (b) SEM and (c) TEM images of 2D Ni-MOF-250 49; (d) LSV curves of Ni-MOF, Ni-MOF-250, and Ni-MOF-400 49; (e) stability test of Ni-MOF-250 at 270 mV overpotential 49; (f) illustration of the preparation of NF@Ni/C composites 51; (g) SEM and (h) TEM images of NF@Ni/C 51; (i) LSV curves and (j) Tafel plots of NF@Ni/C samples 51. (a–e) Adapted from Royal Society of Chemistry publisher 49. (f–i) Adapted from Royal Society of Chemistry publisher 51. "
Fig 7
(a) One-step method of MIL-100(FeNi)/NF 64; (b) standard reaction free energy diagram of OER process on MIL-100(FeNi) surface 64; (c) the illustration of the synthesis of NiFe-NFF 66; (d) LSV curves and (e) overpotentials of NixFey-MOF-74 and other samples 57. (a, b) Adapted from American Chemical Society publisher 64. (c) Adapted from Wiley-VCH publisher 66. (d, e) Adapted from American Chemical Society publisher 57. "
Fig 8
(a) Two synthesis routes to mixed-metal MOFs 58; (b) The illustration of the synthesis of Fe/Ni-BTC 59; (c) Illustration of the synthesis of CoNi-Cu(BDC) 61. (a) Adapted from Royal Society of Chemistry publisher 58. (b) Adapted from Elsevier publisher 59. (c) Adapted from Royal Society of Chemistry publisher 61. "
Fig 9
(a) Illustration of the synthesis of ultrathin Ni-Fe-MOF NSs 70; (b) AFM image of ultrathin Ni-Fe-MOF NSs 70; (c) overpotentials of Ni-MOF NSs and ultrathin Ni-Fe-MOF NSs 70; (d) illustration of the synthesis of flower-like FexNi1-x-MOF 21; (e) SEM image of flower-like FexNi1-x-MOF 21. (a–c) Adapted from Wiley-VCH publisher 70. (d, e) Adapted from American Chemical Society publisher 21. "
Fig 10
(a, b) TEM images of FeNi@N-CNT 33; (c) TEM image of FeNi@N-CNT after OER measurement for 10 h 33; (d) Potentiostatic measurement of FeNi@N-CNT 33; (d) illustration of the synthesis of Fe-Ni@NC-CNTs 75; (e) SEM image of Fe-Ni@NC-CNTs 75; (g, i) TEM images of Fe-Ni@NC-CNTs 75; (j) LSV curves of Fe-Ni@NC-CNTs 75. (a–d) Adapted from American Chemical Society publisher 33. (e–j) Adapted from Wiley-VCH publisher 75. "
Fig 11
(a) Gibbs free energy diagram of UMOFN surface 37; (b) electronic coupling diagram between Co and Ni 37; (c) illustration of the synthesis of M2-(BDC)2TED@CF 81; (d, e) LSV curves and chronoamperometry curves of M2-(BDC)2TED@CF 81. (a, b) Adapted from Macmillan publisher and Springer Nature publisher 37. (c–e) Adapted from Royal Society of Chemistry publisher 81. "
Fig 13
(a) Illustration of the synthesis of Ni1.4Co0.6P/NCNHMs 88; (b) SEM image of Ni1.4Co0.6P/NCNHMs 88; (c) LSV curves of Ni1.4Co0.6P/NCNHMs and other samples 88; (d) illustration of the synthesis of Ni-Co-S HPNA/CC 90; (e) SEM image of Ni-Co-S HPNA/CC 90; (f) LSV curves and (g) Tafel slope of Ni-Co-S HPNA/CC 90. (a–c) Adapted from American Chemical Society publisher 88. (d–g) Adapted from Elsevier publisher 90. "
Fig 14
(a) Illustration of synthesis of NiCo/Fe3O4/MOF-74 96; (b) free energy diagram of the elementary electrochemical steps on NiCo/Fe3O4 96; (c) HAADF-STEM image of NiCo/Fe3O4 96; (d) LSV curves and (e) Tafel slope of NiCo/Fe3O4/MOF-74 calcined at different temperature 96; (f) illustration of synthesis of FeCoNi-LDH 97; (h) chronopotentiometry curve of FeCo0.5Ni0.5-LDH 97. (a–e) Adapted from American Chemical Society publisher 96. (f, g) Adapted from Elsevier publisher 97. "
Table 2
Comparison of the OER performance of pure Ni-MOF and their derivatives materials."
Catalyst | Substrate | Electrolyte (KOH) | η at 10 mA∙cm−2 (mV) | Tafel slope/(mV∙dec−1) | Ref. | |
Ni-MOFs | AB & Ni-MOF(1:1) | NF | 1 mol∙L−1 | 263 | 65 | |
AB & Ni-MOF(1:1) | GC | 1 mol∙L−1 | 379 | 77 | ||
AB & Ni-MOF(1:1) | FTO | 1 mol∙L−1 | 282 | 66 | ||
Ni-MOF (BTC) | CP | 1 mol∙L−1 | 346 | 64 | ||
Ni-MOF | NF | 1 mol∙L−1 | 320 | 123 | ||
Pt-NC/Ni-MOF | GC | 1 mol∙L−1 | 292 | |||
3D Graphene/Ni-MOF | GC | 0.1 mol∙L−1 | 370 | 91 | ||
Ni-MOF derived oxides/hydroxides/carbonaceous materials | Ni-BDC/Ni(OH)2 | GC | 1 mol∙L−1 | 320 | 41 | |
0.6% (w) Fe2O3@Ni-MOF-74 | CP | 1 mol∙L−1 | 264 | 48 | ||
2D Ni-MOF-250 | NF | 1 mol∙L−1 | 250 (at 50 mA∙cm–2) | 89 | ||
NiO/C@NiFe-LDH | GC | 1 mol∙L−1 | 299 | 45 | ||
NiO | GC | 1 mol∙L−1 | 430 | 81 | ||
Ni(OH)2 | GC | 1 mol∙L−1 | 360 | 111 | ||
Ni@NC | NF | 1 mol∙L−1 | 280 | 45 | ||
NF@Ni/C | NF | 1 mol∙L−1 | 265 | 54 | ||
CNH-D-Ni-MOF | CFP | 1 mol∙L−1 | 320 | 85 | ||
CNH-D-Ni-MOF-400 | CFP | 1 mol∙L−1 | 120 | 75 | ||
Ni@NiO/N-C | GC | 1 mol∙L−1 | 390 | 100 | ||
Ni-MOF derived phosphates/sulfides | Ni-P | GC | 1 mol∙L−1 | 300 | 64 | |
Ni2P/rGO | NF | 1 mol∙L−1 | 250 | 62 | ||
NGO/Ni7S6 | GC | 0.1 mol∙L−1 | 380 | 45 | ||
NiS@N/S-C | CFP | 1 mol∙L−1 | 417 | 48 | ||
Ni-BDC@NiS (12 h) | NF | 1 mol∙L−1 | 330 (at 20 mA∙cm–2) | 62 | ||
Ni-Ni3S2@carbon | GC | 1 mol∙L−1 | 285 | 56 |
Table 3
Comparison of the OER performance of bimetallic and trimetallic Ni-MOFs and their derivatives materials."
Catalyst | Substrate | Electrolyte (KOH) | η at 10 mA∙cm−2 (mV) | Tafel slope/(mV∙dec− | Ref. | |
NiFe-MOF | NiFe-MOF-74 | NF | 1 mol∙L−1 | 223 | 72 | |
FeNi-DOBDC-(Fe/Ni 3:1) | GC | 1 mol∙L−1 | 270 (at 50 mA∙cm−2) | 49 | ||
MIL-100(FeNi) | NF | 1 mol∙L−1 | 243 (at 50 mA∙cm−2) | 30 | ||
FeNi3-BTC | NF | 1 mol∙L−1 | 236 | 49 | ||
Fe1Ni4-HHTP NWAs | CC | 1 mol∙L−1 | 213 | 96 | ||
Fe2Ni-MIL-88B | NF | 1 mol∙L−1 | 222 | 42 | ||
Fe0.1-Ni-MOF/NF | NF | 1 mol∙L−1 | 243 (at 50 mA∙cm−2) | 70 | ||
NiFe-MOF/FeCH-NF | NF | 1 mol∙L−1 | 200 | 51 | ||
NiFe-NFF | NF | 1 mol∙L−1 | 250 | 39 | ||
Fe0.38Ni0.62-MOF | CC | 1 mol∙L−1 | 190 | 58 | ||
N-Fe-MOF NSs | GC | 1 mol∙L−1 | 221 | 56 | ||
MFN-MOF (2:1)/NF | NF | 1 mol∙L−1 | 235 (at 50 mA∙cm−2) | 55 | ||
Fe2Ni-MIL-101 | NF | 1 mol∙L−1 | 237 (at 20 mA∙cm−2) | 44 | ||
FeNi@CNF | GC | 1 mol∙L−1 | 356 | 63 | ||
NiFe-MOF derived oxides/hydroxides/carbonaceous materials | Fe-Ni-Ox | GC | 0.1 mol∙L−1 | 584 | 72 | |
NiFe2O4 | NF | 1 mol∙L−1 | 293 | 98 | ||
FeNi3-Fe3O4 NPs/MOF-CNT | GC | 1 mol∙L−1 | 234 | 37 | ||
FeNi@N-CNT | GC | 1 mol∙L−1 | 300 | 48 | ||
Fe-Ni@NC-CNTs | NF | 1 mol∙L−1 | 274 | 45.5 | ||
NiFe-NCs | CFP | 1 mol∙L−1 | 271 | 48 | ||
Ni0.5Fe0.5-HP | NF | 1 mol∙L−1 | 280 | 79 | ||
FeNi/NiFe2O4@NC | GC | 1 mol∙L−1 | 316 | 60 | ||
NiFe@NC | GC | 1 mol∙L−1 | 360 | 60 | ||
NiFe-MOF derived phosphates/sulfides | Fe-Ni-P/rGO-400 | GC | 1 mol∙L−1 | 240 | 63 | |
(NixFe1−x)2P nanocubes | GC | 1 mol∙L−1 | 290 | 44 | ||
Ni-Fe-O-P | GC | 1 mol∙L−1 | 227 | 50 | ||
Ni-Fe-O-B | GC | 1 mol∙L−1 | 243 | 53 | ||
Ni-Fe-O-S | GC | 1 mol∙L−1 | 272 | 70 | ||
NiCo-MOF | NiCo-UMOFNs | GC | 1 mol∙L−1 | 250 | 42 | |
CTGU-10c2 | GC | 1 mol∙L−1 | 240 | 58 | ||
AuNPs@CoNi-MOF | GC | 1 mol∙L−1 | 283 | 83 | ||
M2-(BDC)2TED@CF | CF | 1 mol∙L−1 | 260 | 76 | ||
NiCo-MOF derived materials | NixCo3−xO4/NF | NF | 1 mol∙L−1 | 287 | 88 | |
NCMC | CFP | 1 mol∙L−1 | 290 | 73 | ||
NiCo alloy@C/NixCo1−xO/NF | NF | 1 mol∙L−1 | 300 (at 100 mA∙cm−2) | 106 | ||
CoxNi1−x@CoyNi1−yO@C | GC | 0.1 mol∙L−1 | 126 | |||
CoNi3C/Ni@C | GC | 1 mol∙L−1 | 325 | 68 | ||
NiCo-0.8@N-CNFs-800 | GC | 0.1 mol∙L−1 | 380 | 78 | ||
Co4Ni1P NTs | GC | 1 mol∙L−1 | 245 | 61 | ||
Ni1.4Co0.6P/NCNHMs | 1 mol∙L−1 | 320 | 54.5 | |||
NixCoy-P | NF | 1 mol∙L−1 | 300 (at 35 mA∙cm−2) | 71 | ||
Ni1Co4S@C-1000 | GC | 1 mol∙L−1 | 64 | |||
Ni-Co-S HPNA | CC | 1 mol∙L−1 | 270 | 56 | ||
Co/Ni@C | GC | 0.1 mol∙L−1 | 410 | 101 | ||
Ni-doped CoS2/CFP | CFP | 1 mol∙L−1 | 270 | 79 | ||
Other bimetallic Ni-MOFs and their derivatives | NiCu-MOFNs/NF | NF | 1 mol∙L−1 | 309 (at 100 mA∙cm−2) | 48 | |
Ni/Ni2P/Mo2C@C | GC | 1 mol∙L−1 | 368 | 75 | ||
Ni-Cu@Cu-Ni-MOF | CP | 1 mol∙L−1 | 640 | 98 | ||
Pt-Ni@PCN920 | NF | 1 mol∙L−1 | 59 | |||
UiO-66-NH2-Ni@G | GC | 1 mol∙L−1 | 370 | 45 | ||
Trimetal Ni-MOF and their derivatives | Fe/Ni2.4/Co0.4-MIL-53 | GC | 1 mol∙L−1 | 219 | ||
Co2.36Fe0.19Ni0.45-btca | NF | 1 mol∙L−1 | 292 | 73 | ||
NiCo/Fe3O4/MOF-74 | GC | 1 mol∙L−1 | 238 | 29 | ||
FeCo0.5Ni0.5-LDH | Cu foil | 1 mol∙L−1 | 248 | 38 | ||
NCF-MOF | NF | 0.1 mol∙L−1 | 480 (at 30 mA∙cm−2) | 49 | ||
Ni3S2@MIL-53(NiFeCo)/NF | NF | 1 mol∙L−1 | 236 (at 50 mA∙cm−2) | 15 |
1 |
Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45 (9), 2603.
doi: 10.1039/C5CS00838G |
2 |
Dresselhaus M. S. ; Thomas I. L. Nature 2001, 414 (6861), 332.
doi: 10.1038/35104599 |
3 |
Chu S. ; Majumdar A. Nature 2012, 488 (7411), 294.
doi: 10.1038/nature11475 |
4 |
Kibsgaard J. ; Chorkendorff I. Nat. Energy 2019, 4 (6), 430.
doi: 10.1038/s41560-019-0407-1 |
5 |
McCrory C. C. L. ; Jung S. ; Peters J. C. ; Jaramillo T. F. J. Am. Chem. Soc. 2013, 135 (45), 16977.
doi: 10.1021/ja407115p |
6 |
Dang S. ; Zhu Q. Nat. Rev. Mater. 2018, 3 (1), 17075.
doi: 10.1038/natrevmats.2017.75 |
7 | Chang J. ; Xiao Y. ; Luo Z. ; Ge J. ; Liu C. ; Xing W. Acta Phys. -Chim. Sin. 2016, 32 (7), 1556. |
常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556.
doi: 10.3866/PKU.WHXB201604291 |
|
8 |
Wang H. F. ; Chen L. ; Pang H. ; Kaskel S. ; Xu Q. Chem. Soc. Rev. 2020, 49 (5), 1414.
doi: 10.1039/c9cs00906j |
9 |
Zhu B. ; Liang Z. ; Xia D. ; Zou R. Energy Storage Mater. 2019, 23, 757.
doi: 10.1016/j.ensm.2019.05.022 |
10 |
Wang X. ; Li B. ; Wu Y. P. ; Tsamis A. ; Yu H. G. ; Liu S. ; Zhao J. ; Li Y. S. ; Li D. S. Inorg. Chem. 2020, 59 (7), 4764.
doi: 10.1021/acs.inorgchem.0c00024 |
11 |
Dong Y. ; Oloman C. W. ; Gyenge E. L. ; Su J. ; Chen L. Nanoscale 2020, 12 (18), 9924.
doi: 10.1039/d0nr02187c |
12 |
Han L. ; Dong S. ; Wang E. Adv. Mater. 2016, 28 (42), 9266.
doi: 10.1002/adma.201602270 |
13 |
Gao R. ; Yan D. Adv. Energy Mater. 2020, 10 (11), 1.
doi: 10.1002/aenm.201900954 |
14 | Wang L. ; Sun W. ; Liu C. Acta Phys. -Chim. Sin. 2019, 35 (7), 697. |
王露; 孙威; 刘超. 物理化学学报, 2019, 35 (7), 697.
doi: 10.3866/PKU.WHXB201807071 |
|
15 |
Tang H. ; Zheng M. ; Hu Q. ; Chi Y. ; Xu B. ; Zhang S. ; Xue H. ; Pang H. J. Mater. Chem. A 2018, 6 (29), 13999.
doi: 10.1039/c8ta03644f |
16 |
Xuan C. ; Zhang J. ; Wang J. ; Wang D. Chem. Asian J. 2020, 15 (7), 958.
doi: 10.1002/asia.20190172 |
17 |
Medford A. J. ; Vojvodic A. ; Hummelshøj J. S. ; Voss J. ; Abild-Pedersen F. ; Studt F. ; Bligaard T. ; Nilsson A. ; Nørskov J. K. J. Catal. 2015, 328, 36.
doi: 10.1016/j.jcat.2014.12.033 |
18 |
Man I. C. ; Su H. ; Calle-vallejo F. ; Hansen H. A. ; Martínez J. I. ; Inoglu N. G. ; Kitchin J. ; Jaramillo T. F. ; Nørskov J. K. ; Rossmeisl J. ChemCatChem 2011, 3 (7), 1159.
doi: 10.1002/cctc.201000397 |
19 |
Bode H. ; Dehmelt K. ; Witte J. Electrochim. Acta 1966, 11 (8), 1079.
doi: 10.1016/0013-4686(66)80045-2 |
20 |
Huang J. ; Li Y. ; Zhang Y. ; Rao G. ; Wu C. ; Hu Y. ; Wang X. ; Lu R. ; Li Y. ; Xiong J. Angew. Chem. Int. Ed. 2019, 58 (48), 17458.
doi: 10.1002/anie.201910716 |
21 |
Wan Z. ; Yang D. ; Chen J. ; Tian J. ; Isimjan T. T. ; Yang X. ACS Appl. Nano Mater. 2019, 2 (10), 6334.
doi: 10.1021/acsanm.9b01330 |
22 |
Duan J. ; Chen S. ; Zhao C. Nat. Commun. 2017, 8, 1.
doi: 10.1038/ncomms15341 |
23 |
Li Y. -F. ; Selloni A. ACS Catal. 2014, 4 (4), 1148.
doi: 10.1021/cs401245q |
24 |
Diaz-Morales O. ; Ledezma-Yanez I. ; Koper M. T. M. ; Calle-Vallejo F. ACS Catal. 2015, 5 (9), 5380.
doi: 10.1021/acscatal.5b01638 |
25 |
Li W. H. ; Lv J. ; Li Q. ; Xie J. ; Ogiwara N. ; Huang Y. ; Jiang H. ; Kitagawa H. ; Xu G. ; Wang Y. J. Mater. Chem. A 2019, 7 (17), 10431.
doi: 10.1039/c9ta02169h |
26 |
Yeo B. S. ; Bell A. T. J. Phys. Chem. C 2012, 116 (15), 8394.
doi: 10.1021/jp3007415 |
27 |
Jiao Y. ; Zheng Y. ; Jaroniec M. ; Qiao S. Z. Chem. Soc. Rev. 2015, 44 (8), 2060.
doi: 10.1039/C4CS00470A |
28 |
Suen N. ; Hung S. ; Quan Q. ; Zhang N. ; Xu Y. ; Chen H. Chem. Soc. Rev. 2017, 46 (2), 337.
doi: 10.1039/C6CS00328A |
29 |
Dietzel P. D. C. ; Panella B. ; Hirscher M. ; Blom R. ; Fjellvåg H. Chem. Commun. 2006, 1 (9), 959.
doi: 10.1039/b515434k |
30 |
Palomino Cabello C. ; Gómez-Pozuelo G. ; Opanasenko M. ; Nachtigall P. ; Čejka J. ChemPlusChem 2016, 81 (8), 828.
doi: 10.1002/cplu.201600168 |
31 |
Gao Z. ; Yu Z. W. ; Liu F. Q. ; Yu Y. ; Su X. M. ; Wang L. ; Xu Z. Z. ; Yang Y. L. ; Wu G. R. ; Feng X. F. ; et al Inorg. Chem. 2019, 58 (17), 11500.
doi: 10.1021/acs.inorgchem.9b01301 |
32 |
Janiak C. ; Vieth J. K. New J. Chem. 2010, 34 (11), 2366.
doi: 10.1039/c0nj00275e |
33 |
Tao Z. ; Wang T. ; Wang X. ; Zheng J. ; Li X. ACS Appl. Mater. Interfaces 2016, 8 (51), 35390.
doi: 10.1021/acsami.6b13411 |
34 |
Lin Y. ; Chen G. ; Wan H. ; Chen F. ; Liu X. ; Ma R. Small 2019, 15 (18), 1.
doi: 10.1002/smll.201900348 |
35 |
Yaghi O. M. ; Li H. J. Am. Chem. Soc. 1995, 117 (41), 10401.
doi: 10.1021/ja00146a033 |
36 |
Ping D. ; Feng X. ; Zhang J. ; Geng J. ; Dong X. ChemElectroChem 2017, 4 (12), 3037.
doi: 10.1002/celc.201700901 |
37 |
Zhao S. ; Wang Y. ; Dong J. ; He C. -T. ; Yin H. ; An P. ; Zhao K. ; Zhang X. ; Gao C. ; Zhang L. ; et al Nat. Energy 2016, 1 (12), 16184.
doi: 10.1038/nenergy.2016.184 |
38 |
Shuai C. ; Mo Z. ; Niu X. ; Zhao P. ; Dong Q. ; Chen Y. ; Liu N. ; Guo R. J. Electrochem. Soc. 2020, 167 (2), 026512.
doi: 10.1149/1945-7111/ab6b10 |
39 |
Stock N. ; Biswas S. Chem. Rev. 2012, 112 (2), 933.
doi: 10.1021/cr200304e |
40 |
Braga D. ; Giaffreda S. L. ; Grepioni F. ; Pettersen A. ; Maini L. ; Curzi M. ; Polito M. Dalt. Trans. 2006, 10, 1249.
doi: 10.1039/b516165g |
41 |
Zhu D. ; Liu J. ; Wang L. ; Du Y. ; Zheng Y. ; Davey K. ; Qiao S. Z. Nanoscale 2019, 11 (8), 3599.
doi: 10.1039/c8nr09680e |
42 |
Xu Y. ; Tu W. ; Zhang B. ; Yin S. ; Huang Y. ; Kraft M. ; Xu R. Adv. Mater. 2017, 29 (11), 1.
doi: 10.1002/adma.201605957 |
43 |
He P. ; Xie Y. ; Dou Y. ; Zhou J. ; Zhou A. ; Wei X. ; Li J. R. ACS Appl. Mater. Interfaces 2019, 11 (44), 41595.
doi: 10.1021/acsami.9b16224 |
44 |
Yan L. ; Jiang H. ; Xing Y. ; Wang Y. ; Liu D. ; Gu X. ; Dai P. ; Li L. ; Zhao X. J. Mater. Chem. A 2018, 6 (4), 1682.
doi: 10.1039/c7ta10218f |
45 |
Zhang H. ; Su J. ; Zhao K. ; Chen L. ChemElectroChem 2020, 7 (8), 1805.
doi: 10.1002/celc.202000136 |
46 |
Maruthapandian V. ; Kumaraguru S. ; Mohan S. ; Saraswathy V. ; Muralidharan S. ChemElectroChem 2018, 5 (19), 2795.
doi: 10.1002/celc.201800802 |
47 |
Liu Q. ; Xie L. ; Shi X. ; Du G. ; Asiri A. M. ; Luo Y. ; Sun X. Inorg. Chem. Front. 2018, 5 (7), 1570.
doi: 10.1039/C7QI00808B |
48 |
Guo C. ; Jiao Y. ; Zheng Y. ; Luo J. ; Davey K. ; Qiao S. Z. Chem 2019, 5 (9), 2429.
doi: 10.1016/j.chempr.2019.06.016 |
49 |
Hu Q. ; Huang X. ; Wang Z. ; Li G. ; Han Z. ; Yang H. ; Ren X. ; Zhang Q. ; Liu J. ; He C. J. Mater. Chem. A 2020, 8 (4), 2140.
doi: 10.1039/c9ta12713e |
50 |
Li X. ; Fan M. ; Wei D. ; Wang X. ; Wang Y. J. Electrochem. Soc. 2020, 167 (2), 024501.
doi: 10.1149/1945-7111/ab61eb |
51 |
Sun H. ; Lian Y. ; Yang C. ; Xiong L. ; Qi P. ; Mu Q. ; Zhao X. ; Guo J. ; Deng Z. ; Peng Y. Energy Environ. Sci. 2018, 11 (9), 2363.
doi: 10.1039/c8ee00934a |
52 |
Guo Y. ; Zhou Y. ; Nan Y. ; Li B. ; Song X. ACS Appl. Mater. Interfaces 2020, 12 (11), 12743.
doi: 10.1021/acsami.9b20532 |
53 |
Yu X. Y. ; Feng Y. ; Guan B. ; Lou X. W. D. ; Paik U. Energy Environ. Sci. 2016, 9 (4), 1246.
doi: 10.1039/c6ee00100a |
54 |
Jayaramulu K. ; Masa J. ; Tomanec O. ; Peeters D. ; Ranc V. ; Schneemann A. ; Zboril R. ; Schuhmann W. ; Fischer R. A. Adv. Funct. Mater. 2017, 27 (33), 1.
doi: 10.1002/adfm.201700451 |
55 |
Yang L. ; Gao M. ; Dai B. ; Guo X. ; Liu Z. ; Peng B. Electrochim. Acta 2016, 191, 813.
doi: 10.1016/j.electacta.2016.01.160 |
56 |
Xing J. ; Guo K. ; Zou Z. ; Cai M. ; Du J. ; Xu C. Chem. Commun. 2018, 54 (51), 7046.
doi: 10.1039/c8cc03112f |
57 |
Zheng F. ; Xiang D. ; Li P. ; Zhang Z. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. ACS Sustain. Chem. Eng. 2019, 7 (11), 9743.
doi: 10.1021/acssuschemeng.9b01131 |
58 |
Abednatanzi S. ; Gohari Derakhshandeh P. ; Depauw H. ; Coudert F. -X. ; Vrielinck H. ; Van Der Voort P. ; Leus K. Chem. Soc. Rev. 2019, 48 (9), 2535.
doi: 10.1039/C8CS00337H |
59 |
Zheng F. ; Zhang Z. ; Xiang D. ; Li P. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. J. Colloid Interface Sci. 2019, 555, 541.
doi: 10.1016/j.jcis.2019.08.005 |
60 |
Wang L. J. ; Deng H. ; Furukawa H. ; Gándara F. ; Cordova K. E. ; Peri D. ; Yaghi O. M. Inorg. Chem. 2014, 53 (12), 5881.
doi: 10.1021/ic500434a |
61 |
Ma J. ; Lu B. ; Wang S. ; He W. ; Bai X. ; Wang T. ; Zhang X. ; Li Y. ; Zhang L. ; Chen J. ; et al New J. Chem. 2020, 44 (6), 2459.
doi: 10.1039/c9nj05562b |
62 |
Mohammed-Ibrahim J. J. Power Sources 2020, 448, 227375.
doi: 10.1016/j.jpowsour.2019.227375 |
63 |
Zhang W. ; Li D. ; Zhang L. ; She X. ; Yang D. J. Energy Chem. 2019, 39, 39.
doi: 10.1016/j.jechem.2019.01.017 |
64 |
Li C. ; Liu Y. ; Wang G. ; Guan L. ; Lin Y. ACS Sustain. Chem. Eng. 2019, 7 (8), 7496.
doi: 10.1021/acssuschemeng.9b00264 |
65 |
Ling X. ; Du F. ; Zhang Y. ; Shen Y. ; Li T. ; Alsaedi A. ; Hayat T. ; Zhou Y. ; Zou Z. RSC Adv. 2019, 9 (57), 33558.
doi: 10.1039/c9ra07499f |
66 |
Cao C. ; Ma D. D. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Adv. Funct. Mater. 2019, 29 (6), 1.
doi: 10.1002/adfm.201807418 |
67 |
Yang L. ; Zhu G. ; Wen H. ; Guan X. ; Sun X. ; Feng H. ; Tian W. ; Zheng D. ; Cheng X. ; Yao Y. J. Mater. Chem. A 2019, 7 (15), 8771.
doi: 10.1039/c9ta00819e |
68 |
Du J. ; Xu S. ; Sun L. ; Li F. Chem. Commun. 2019, 55 (98), 14773.
doi: 10.1039/c9cc07433c |
69 |
Huang J. ; Li Y. ; Huang R. -K. ; He C. -T. ; Gong L. ; Hu Q. ; Wang L. ; Xu Y. -T. ; Tian X. -Y. ; Liu S. -Y. ; et al Angew. Chem. 2018, 130 (17), 4722.
doi: 10.1002/ange.201801029 |
70 |
Li F. L. ; Wang P. ; Huang X. ; Young D. J. ; Wang H. F. ; Braunstein P. ; Lang J. P. Angew. Chem. Int. Ed. 2019, 58 (21), 7051.
doi: 10.1002/anie.201902588 |
71 |
Jiang J. ; Zhang C. ; Ai L. Electrochim. Acta 2016, 208, 17.
doi: 10.1016/j.electacta.2016.05.008 |
72 |
Fang Z. ; Hao Z. ; Dong Q. ; Cui Y. J. Nanopart. Res. 2018, 20 (4), 106.
doi: 10.1007/s11051-018-4209-3 |
73 |
Srinivas K. ; Lu Y. ; Chen Y. ; Zhang W. ; Yang D. ACS Sustain. Chem. Eng. 2020, 8 (9), 3820.
doi: 10.1021/acssuschemeng.9b07182 |
74 |
Flahaut E. ; Govindaraj A. ; Peigney A. ; Laurent C. ; Rousset A. ; Rao C. N. R. Chem. Phys. Lett. 1999, 300 (1), 236.
doi: 10.1016/S0009-2614(98)01304-9 |
75 |
Zhao X. ; Pachfule P. ; Li S. ; Simke J. R. J. ; Schmidt J. ; Thomas A. Angew. Chem. Int. Ed. 2018, 57 (29), 8921.
doi: 10.1002/anie.201803136 |
76 |
Zou H. H. ; Yuan C. Z. ; Zou H. Y. ; Cheang T. Y. ; Zhao S. J. ; Qazi U. Y. ; Zhong S. L. ; Wang L. ; Xu A. W. Catal. Sci. Technol. 2017, 7 (7), 1549.
doi: 10.1039/c7cy00035a |
77 |
Fang X. ; Jiao L. ; Zhang R. ; Jiang H. L. ACS Appl. Mater. Interfaces 2017, 9 (28), 23852.
doi: 10.1021/acsami.7b07142 |
78 |
Xuan C. ; Wang J. ; Xia W. ; Zhu J. ; Peng Z. ; Xia K. ; Xiao W. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2018, 6 (16), 7062.
doi: 10.1039/c8ta00410b |
79 |
Zhou W. ; Huang D. D. ; Wu Y. P. ; Zhao J. ; Wu T. ; Zhang J. ; Li D. S. ; Sun C. ; Feng P. ; Bu X. Angew. Chem. Int. Ed. 2019, 58 (13), 4227.
doi: 10.1002/anie.201813634 |
80 |
Hu W. C. ; Shi Y. ; Zhou Y. ; Weng C. ; Younis M. R. ; Pang J. ; Wang C. ; Xia X. H. J. Mater. Chem. A 2019, 7 (17), 10601.
doi: 10.1039/c9ta00847k |
81 |
Li D. J. ; Li Q. H. ; Gu Z. G. ; Zhang J. J. Mater. Chem. A 2019, 7 (31), 18519.
doi: 10.1039/c9ta04554f |
82 |
Shen Y. ; Guo S. G. ; Du F. ; Yuan X. B. ; Zhang Y. ; Hu J. ; Shen Q. ; Luo W. ; Alsaedi A. ; Hayat T. ; et al Nanoscale 2019, 11 (24), 11765.
doi: 10.1039/c9nr01804b |
83 |
Wei X. ; Zhang Y. ; He H. ; Gao D. ; Hu J. ; Peng H. ; Peng L. ; Xiao S. ; Xiao P. Chem. Commun. 2019, 55 (46), 6515.
doi: 10.1039/c9cc02037c |
84 |
Sun D. ; Ye L. ; Sun F. ; García H. ; Li Z. Inorg. Chem. 2017, 56 (9), 5203.
doi: 10.1021/acs.inorgchem.7b00333 |
85 |
Jia X. ; Wang M. ; Liu G. ; Wang Y. ; Yang J. ; Li J. Int. J. Hydrog. Energy 2019, 44 (45), 24572.
doi: 10.1016/j.ijhydene.2019.07.144 |
86 |
Feng C. ; Guo Y. ; Xie Y. ; Cao X. ; Li S. ; Zhang L. ; Wang W. ; Wang J. Nanoscale 2020, 12 (10), 5942.
doi: 10.1039/c9nr10943a |
87 |
Yan L. ; Cao L. ; Dai P. ; Gu X. ; Liu D. ; Li L. ; Wang Y. ; Zhao X. Adv. Funct. Mater. 2017, 27 (40), 1.
doi: 10.1002/adfm.201703455 |
88 |
Fan S. ; Zhang J. ; Wu Q. ; Huang S. ; Zheng J. ; Kong D. ; Chen S. ; Wang Y. ; Ang L. K. ; Shi Y. ; et al J. Phys. Chem. Lett. 2020, 11 (10), 3911.
doi: 10.1021/acs.jpclett.0c00851 |
89 |
Chen B. ; Ma G. ; Zhu Y. ; Wang J. ; Xiong W. ; Xia Y. J. Power Sources 2016, 334, 112.
doi: 10.1016/j.jpowsour.2016.10.022 |
90 |
Chen W. ; Zhang Y. ; Chen G. ; Huang R. ; Wu Y. ; Zhou Y. ; Hu Y. ; Ostrikov K. J. Colloid Interface Sci. 2020, 560, 426.
doi: 10.1016/j.jcis.2019.10.099 |
91 |
Ma X. ; Qi K. ; Wei S. ; Zhang L. ; Cui X. J. Alloys Compd. 2019, 770, 236.
doi: 10.1016/j.jallcom.2018.08.096 |
92 |
Zheng X. ; Song X. ; Wang X. ; Zhang Z. ; Sun Z. ; Guo Y. New J. Chem. 2018, 42 (11), 8346.
doi: 10.1039/c8nj01035h |
93 |
Li X. ; Wang X. ; Zhou J. ; Han L. ; Sun C. ; Wang Q. ; Su Z. J. Mater. Chem. A 2018, 6 (14), 5789.
doi: 10.1039/c7ta10558d |
94 |
Li F. L. ; Shao Q. ; Huang X. ; Lang J. P. Angew. Chem. Int. Ed. 2018, 57 (7), 1888.
doi: 10.1002/anie.201711376 |
95 |
Yuan J. T. ; Hou J. J. ; Liu X. L. ; Feng Y. R. ; Zhang X. M. Dalt. Trans. 2020, 49 (3), 750.
doi: 10.1039/c9dt04295d |
96 |
Wang X. ; Xiao H. ; Li A. ; Li Z. ; Liu S. ; Zhang Q. ; Gong Y. ; Zheng L. ; Zhu Y. ; Chen C. ; et al J. Am. Chem. Soc. 2018, 140 (45), 15336.
doi: 10.1021/jacs.8b08744 |
97 |
Zhang W. Da ; Yu H. ; Li T. ; Hu Q. T. ; Gong Y. ; Zhang D. Y. ; Liu Y. ; Fu Q. T. ; Zhu H. Y. ; et al Appl. Catal. B Environ. 2020, 264, 118532.
doi: 10.1016/j.apcatb.2019.118532 |
98 |
Ahn W. ; Park M. G. ; Lee D. U. ; Seo M. H. ; Jiang G. ; Cano Z. P. ; Hassan F. M. ; Chen Z. Adv. Funct. Mater. 2018, 28 (28), 1.
doi: 10.1002/adfm.201802129 |
99 |
Yuan B. ; Li C. ; Guan L. ; Li K. ; Lin Y. J. Power Sources 2020, 451, 227295.
doi: 10.1016/j.jpowsour.2019.227295 |
100 |
Xie A. ; Du J. ; Tao F. ; Tao Y. ; Xiong Z. ; Luo S. ; Li X. ; Yao C. Electrochim. Acta 2019, 305, 338.
doi: 10.1016/j.electacta.2019.03.073 |
101 |
Xie A. ; Zhang J. ; Tao X. ; Zhang J. ; Wei B. ; Peng W. ; Tao Y. ; Luo S. Electrochim. Acta 2019, 324, 134814.
doi: 10.1016/j.electacta.2019.134814 |
102 |
Senthil Raja D. ; Lin H. W. ; Lu S. Y. Nano Energy 2019, 57, 1.
doi: 10.1016/j.nanoen.2018.12.018 |
103 |
Wang Q. ; Wei C. ; Li D. ; Guo W. ; Zhong D. ; Zhao Q. Microporous Mesoporous Mater. 2019, 286, 92.
doi: 10.1016/j.micromeso.2019.05.040 |
104 |
Li Y. ; Lu M. ; He P. ; Wu Y. ; Wang J. ; Chen D. ; Xu H. ; Gao J. ; Yao J. Chem. Asian J. 2019, 14 (9), 1590.
doi: 10.1002/asia.201900328 |
105 |
Kumar A. ; Bhattacharyya S. ACS Appl. Mater. Interfaces 2017, 9 (48), 41906.
doi: 10.1021/acsami.7b14096 |
106 |
Qiao H. ; Yang Y. ; Dai X. ; Zhao H. ; Yong J. ; Yu L. ; Luan X. ; Cui M. ; Zhang X. ; Huang X. Electrochim. Acta 2019, 318, 430.
doi: 10.1016/j.electacta.2019.06.084 |
107 |
Ma Y. ; Dai X. ; Liu M. ; Yong J. ; Qiao H. ; Jin A. ; Li Z. ; Huang X. ; Wang H. ; Zhang X. ACS Appl. Mater. Interfaces 2016, 8 (50), 34396.
doi: 10.1021/acsami.6b11821 |
108 |
Du L. ; Luo L. ; Feng Z. ; Engelhard M. ; Xie X. ; Han B. ; Sun J. ; Zhang J. ; Yin G. ; Wang C. ; et al Nano Energy 2017, 39, 245.
doi: 10.1016/j.nanoen.2017.07.006 |
109 |
Abdelkader-Fernández V. K. ; Fernandes D. M. ; Balula S. S. ; Cunha-Silva L. ; Pérez-Mendoza M. J. ; López-Garzón F. J. ; Pereira M. F. ; Freire C. ACS Appl. Energy Mater. 2019, 2 (3), 1854.
doi: 10.1021/acsaem.8b02010 |
110 |
Xie Z. ; Tang H. ; Wang Y. ChemElectroChem 2019, 6 (4), 1206.
doi: 10.1002/celc.201801106 |
111 |
Nadeem M. ; Yasin G. ; Bhatti M. H. ; Mehmood M. ; Arif M. ; Dai L. J. Power Sources 2018, 402, 34.
doi: 10.1016/j.jpowsour.2018.09.006 |
112 |
Hassan M. H. ; Soliman A. B. ; Elmehelmey W. A. ; Abugable A. A. ; Karakalos S. G. ; Elbahri M. ; Hassanien A. ; Alkordi M. H. Chem. Commun. 2019, 55 (1), 31.
doi: 10.1039/c8cc07120a |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[3] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[4] | 胡荣, 韦丽云, 鲜靖林, 房光钰, 吴植傲, 樊淼, 郭家越, 李青翔, 刘凯思, 姜会钰, 徐卫林, 万骏, 姚永刚. 微波热冲快速制备二维多孔La0.2Sr0.8CoO3钙钛矿用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212025 -0 . |
[5] | 夏伟锋, 季成宇, 王锐, 裘式纶, 方千荣. 基于四硫富瓦烯的无金属共价有机框架材料用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212057 -0 . |
[6] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[7] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[8] | 杨帅, 徐瑜歆, 郝子坤, 秦胜建, 张润鹏, 韩钰, 杜利伟, 朱紫洢, 杜安宁, 陈欣, 吴昊, 乔冰冰, 李坚, 王艺, 孙昺晨, 闫融融, 赵晋津. 高效医学传感钙钛矿材料研究进展[J]. 物理化学学报, 2023, 39(5): 2211025 -0 . |
[9] | 荣佑文, 桑佳琪, 车丽, 高敦峰, 汪国雄. 二氧化碳电催化还原中的电解质效应[J]. 物理化学学报, 2023, 39(5): 2212027 -0 . |
[10] | 许义飞, 杨瀚文, 常晓侠, 徐冰君. 电催化动力学简介[J]. 物理化学学报, 2023, 39(4): 2210025 -0 . |
[11] | 王奥琦, 陈军, 张鹏飞, 唐珊, 冯兆池, 姚婷婷, 李灿. NiMo(O)物相结构与电解水析氢反应活性的关联[J]. 物理化学学报, 2023, 39(4): 2301023 -0 . |
[12] | 胡洋, 刘斌, 徐路遥, 董自强, 仵亚婷, 刘杰, 钟澄, 胡文彬. 基于微流控技术平台的Pt基三元电催化剂高通量合成和筛选[J]. 物理化学学报, 2023, 39(3): 2209004 -0 . |
[13] | 徐斯然, 吴奇, 卢帮安, 唐堂, 张佳楠, 胡劲松. “绿氢”工业化碱性催化剂研究现状及未来展望[J]. 物理化学学报, 2023, 39(2): 2209001 -0 . |
[14] | 尉瑞芳, 李东峰, 尹恒, 王秀丽, 李灿. 微秒时间分辨的工况电化学紫外可见吸收光谱测量系统[J]. 物理化学学报, 2023, 39(2): 2207035 -0 . |
[15] | 韦天然, 张书胜, 刘倩, 邱园, 罗俊, 刘熙俊. 富氧空位的非晶氧化铜高选择性电催化还原CO2制乙烯[J]. 物理化学学报, 2023, 39(2): 2207026 -0 . |
|