物理化学学报 >> 2021, Vol. 37 >> Issue (5): 2009098.doi: 10.3866/PKU.WHXB202009098

所属专题: CO2还原

综述 上一篇    下一篇

过渡金属催化CO2/H2参与的羰基化研究进展

华凯敏1,2, 刘晓放1, 魏百银1,3, 张书南1,2, 王慧1,*(), 孙予罕1,3,4,*()   

  1. 1 中国科学院上海高等研究院,中科院低碳转化科学与工程重点实验室,上海 201203
    2 中国科学院大学,北京 100049
    3 上海科技大学物质科学与技术学院,上海 201203
    4 上海低碳技术创新功能型平台,上海 201620
  • 收稿日期:2020-09-29 录用日期:2020-10-20 发布日期:2020-10-23
  • 通讯作者: 王慧,孙予罕 E-mail:wanghh@sari.ac.cn;sunyh@sari.ac.cn
  • 作者简介:王慧,2006年毕业于中国科学院山西煤炭化学研究所,获博士学位。现任中国科学院上海高等研究院低碳转化科学与工程重点实验室研究员,博士生导师。主要从事于CO2/CO制高附加值化学品相关研究及其技术开发工作
    孙予罕,1983年毕业于郑州大学化学系,获得学士学位;1983年至1989年在中国科学院山西煤炭化学研究所获博士学位。现任中国科学院上海高等研究院低碳转化科学与工程重点实验室主任。主要从事含碳资源与CO2转化利用中催化和工程研究,以及相关纳米材料及其在绿色化学中的应用研究,包括近期的清洁能源战略与解决方案研究
  • 基金资助:
    国家自然科学基金(21776296);国家自然科学基金(21905291);国家重点研发计划(2017YFB0602203);中国科学院战略性先导科技专项(XDA21090201);中国科学院重点项目(ZDRW-ZS-2018-1-3);上海市扬帆计划(19YF1453000)

Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2

Kaimin Hua1,2, Xiaofang Liu1, Baiyin Wei1,3, Shunan Zhang1,2, Hui Wang1,*(), Yuhan Sun1,3,4,*()   

  1. 1 CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
    2 University of the Chinese Academy of Sciences, Beijing 100049, China
    3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, China
    4 Shanghai Institute of Clean Technology, Shanghai 201620, China
  • Received:2020-09-29 Accepted:2020-10-20 Published:2020-10-23
  • Contact: Hui Wang,Yuhan Sun E-mail:wanghh@sari.ac.cn;sunyh@sari.ac.cn
  • About author:Email: sunyh@sari.ac.cn (S.Y.); Tel.: +86-21-20325009 (S.Y.)
    Email: wanghh@sari.ac.cn (W.H.); Tel.: +86-21-20328002 (W.H)
  • Supported by:
    the National Natural Science Foundation of China(21776296);the National Natural Science Foundation of China(21905291);the National Key Research and Development Program of China(2017YFB0602203);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21090201);Key Research Program of Chinese Academy of Sciences(ZDRW-ZS-2018-1-3);the Shanghai Sailing Program, China(19YF1453000)

摘要:

有限的化石燃料与不断增长的能源需求的矛盾和因温室气体大量排放导致的异常气候变化这两大相关问题引起全世界范围内的关注。二氧化碳(CO2)是一种主要的温室气体,同时也是合成燃料和化学品的重要C1资源。利用CO2参与合成化学品能有效减少温室气体的排放。然而,高度氧化、热力学稳定的CO2的化学转化仍然是一较大挑战,需要引入还原剂等参与CO2的化学转化。作为理想的还原剂,氢气(H2)可将CO2逆水煤气变换(RWGS)转化为一氧化碳(CO),考虑到有毒CO的繁琐分离和运输,众多研究利用原位生成的CO参与到各种羰基化反应中,既得到了高附加值的化学品,又避免了CO的直接使用。基于此,过渡金属催化CO2/H2参与的羰基化反应得到了广泛地关注和研究,实现了CO2/H2参与的烯烃羰基化生成醇、羧酸、胺、醛等产物。同时多相催化的烯烃羰基化的实现为该领域开发了新的催化体系。在烯烃羰基化的基础上,该领域得到了进一步的发展,CO2参与羰基化的反应路径变得更加丰富,如出现了CO2加氢到甲酸(HCOOH),HCOOH到CO的间接生成CO的路径和CO2直接参与羰基化的反应路径,实现了CO2/H2参与的卤代烃、甲醇(MeOH)及其衍生物等的羰基化反应,获得芳醛、乙酸、乙醇等大宗或精细化学品。CO2/H2参与的羰基化研究的快速发展拓展了CO2资源化利用的途径,获得高附加值的大宗或精细化学品,促进了绿色化学的发展。本文主要围绕过渡金属催化CO2/H2参与的多种羰基化生成高附加值化学品的反应,总结了近年来的研究进展,并对该方向的发展做了展望。

关键词: 二氧化碳加氢, 羰基化反应, 过渡金属催化, 醇, 醛, 羧酸, 乙醇, 乙酸

Abstract:

Ever-increasing energy demands due to rapid industrialization and urban population growth have drastically reduced petroleum reserves and increased greenhouse-gas production, and the latter has consequently contributed to climate change and environmental damage. Therefore, it is highly desirable to produce fuels and chemicals from non-petroleum feedstocks and to reduce the atmospheric concentrations of greenhouse gases. One solution has involved using carbon dioxide (CO2), a main greenhouse gas, as a C1 feedstock for producing industrial fuels and chemicals. However, this requires high energy input from reductants or reactants with relatively high free energy (e.g., H2 gas) because CO2 is a highly oxidized, thermodynamically stable form of carbon. H2 can be generated through water photolysis, making it an ideal reductant for hydrogenating CO2 to CO. In situ generation of CO such as this has been developed for various carbonylation reactions that produce high value-added chemicals and avoid deriving CO from fossil fuels. This is beneficial because CO is toxic, and when extracted from fossil fuels it requires tedious separation and transportation. This combination of CO2 and H2 allows for functional molecules to be synthesized as entries into the chemical industry value chain and would generate a carbon footprint much lower than that of conventional petrochemical pathways. Based on this, CO2/H2 carbonylations using homogeneous transition metal-based catalysts have attracted increasing attention. Through this process, alkenes have been converted to alcohols, carboxylic acids, amines, and aldehydes. Heterogeneous catalysis has also provided an innovative approach for the carbonylation of alkenes with CO2/H2. Based on these alkene carbonylations, the scope of CO2/H2 carbonylations has been expanded to include aryl halides, methanol, and methanol derivatives, which give the corresponding aryl aldehyde, acetic acid, and ethanol products. These carbonylations revealed indirect CO2-HCOOH-CO pathways and direct CO2 insertion pathways. The use of this process is ever-increasing and has expanded the scope of CO2 utilization to produce novel, high value-added or bulk chemicals, and has promoted sustainable chemistry. This review summarizes the recent advances in transition-metal-catalyzed carbonylations with CO2/H2 and discusses the perspectives and challenges of further research.

Key words: Carbon dioxide hydrogenation, Carbonylation, Transition metal catalysis, Alcohols, Aldehydes, Carboxylic acids, Ethanol, Acetic acid