物理化学学报 >> 2021, Vol. 37 >> Issue (8): 2011073.doi: 10.3866/PKU.WHXB202011073
所属专题: 二维光催化材料
收稿日期:
2020-11-28
录用日期:
2020-12-28
发布日期:
2020-12-30
通讯作者:
黄宇
E-mail:huangyu@ieecas.cn
作者简介:
Yu Huang is currently a full professor at Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences. He obtained his Ph.D. degree in 2012 from The Hong Kong Polytechnic University. His research interests include atmospheric VOCs characteristics and environmental effects, indoor air quality, air pollution control research and application
基金资助:
Wei Wang1,2, Yu Huang1,*(), Zhenyu Wang1
Received:
2020-11-28
Accepted:
2020-12-28
Published:
2020-12-30
Contact:
Yu Huang
E-mail:huangyu@ieecas.cn
About author:
Yu Huang, Email: huangyu@ieecas.cn; Tel.: +86-29-6233-6261Supported by:
摘要:
二维石墨相氮化碳(2D g-C3N4)由于其特殊的π-π共轭结构,较窄的禁带宽度(2.7 eV)以及比表面积大、结构稳定、绿色无毒、来源广泛等特点,在光催化领域显示出巨大的应用潜力。然而,传统g-C3N4由于其可见光吸收差、光生载流子复合快、量子效率低等固有缺点导致其光催化性能较差,限制其应用。迄今为止,研究人员已经设计并开发了异质结构建、缺陷工程和形貌调控等多种策略来改善g-C3N4光催化活性。其中,缺陷工程通过调节g-C3N4的表面电子结构和能级结构来提高其光捕获、光生载流子分离-迁移和目标分子吸附/活化能力,从而改善其光催化能力。本文综述了非外源因素诱导(碳空位、氮空位等)以及外源因素诱导缺陷(掺杂和功能化)修饰g-C3N4,调控其光电子及光催化性能的最新研究进展,并介绍了2D g-C3N4在光催化净化大气方面的应用进展。最后,对g-C3N4在光催化领域的后续研究进行了展望。这篇文章的主要目的是为全面、深入地理解缺陷调控g-C3N4光催化性能的机制提供思路,以期更好地指导g-C3N4光催化剂的后续研究及其工商业应用开发。
王薇, 黄宇, 王震宇. 缺陷工程调控石墨相氮化碳及其光催化空气净化应用进展[J]. 物理化学学报, 2021, 37(8), 2011073. doi: 10.3866/PKU.WHXB202011073
Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification[J]. Acta Phys. -Chim. Sin. 2021, 37(8), 2011073. doi: 10.3866/PKU.WHXB202011073
Fig 1
(a) Pristine g-C3N4 mode. Boron atom substitution doping at (b) two inequivalent carbon sites or (c) three inequivalent nitrogen sites, reproduced with permission from Appl. Catal. B: Environ., Elsevier 7. (d) Carbon- and nitrogen-containing materials obtained from the thermolysis of mercury(II) thiocyanate, adapted from Angew. Chem. Int. Ed., Wiley publisher 6. (e) Electronic band structures of different g-C3N4."
Fig 2
(a) Schematic diagram of efficient solar-to-H2O2 conversion by polymeric carbon nitride with two types of cooperative nitrogen vacancies (NHx vacancy and N2C vacancy), adapted from Appl. Catal. B: Environ., Elsevier 43. (b) SEM images and the visible light photocatalytic NO removal activities of CNT-12, (c) schematic diagram depicting the roles of N-vacancies, (d) proposed reaction pathways for adsorption and the photocatalytic oxidation of NO over CN and CNT-12, reproduced with permission from ACS Appl. Mater. Interfaces, American Chemical Society 48."
Fig 3
(a) Reaction mechanism of carbon vacancies under visible-light irradiation, reproduced with permission from ACS Appl. Nano Mater., American Chemical Society 54. The schematic diagram of SDR-CN (b) and photophysical processes in SDR-CN (c), adapted from Appl. Catal. B: Environ., Elsevier 60. (d) Schematic diagram of TC-HCl and SMZ photodegradation by VN fabricated g-C3N4 with increased crystallinity, adapted from Appl. Surf. Sci., Elsevier 63."
Fig 4
(a) Schematic diagram of photocatalytic removal of NO by intercalated carbon nitride MCN, adapted from Appl. Catal. B: Environ., Elsevier 64. (b) PL spectra and (c) preparation and the photocatalytic NO removal mechanisms of BCNT, reproduced with permission from Appl. Catal. B: Environ., Elsevier 7."
Fig 5
(a) The mechanisms of photocatalytic NO removal on CNCU1, CNCU2, and CNCU3, reproduced with permission from ACS Appl. Mater. Interfaces, American Chemical Society 83. (b) Schematic diagram of photocatalytic H2 evolution by benzene doped g-C3N4, reproduced with permission from J. Mater. Chem. A, Royal Society of Chemistry 87. (c) Schematic diagram of photocatalytic NO removal by pCN/TiO2 nanocomposite film, (d) optical photograph of pCN/TiO2 films, reproduced with permission from Appl. Catal. B: Environ., Elsevier 95."
Fig 6
(a) Aerial view of the coating district and sampling sites, (b) loading of g-C3N4/TiO2 composite sol onto the road via spray method, (c) surface of the concrete barrier coated (upward) with and (nether) without g-C3N4/TiO2 after 4 months, (d) schematic diagram of photocatalytic air-purifying pavement, reproduced with permission from Sol. RRL, Wiley 96."
1 |
Su J. ; Li G.-D. ; Li X.-H. ; Chen J.-S. Adv. Sci. 2019, 6 (7), 1801702.
doi: 10.1002/advs.201801702 |
2 |
Xiong J. ; Di J. ; Xia J. ; Zhu W. ; Li H. Adv. Funct. Mater. 2018, 28 (39), 1801983.
doi: 10.1002/adfm.201801983 |
3 |
Zheng Y. ; Liu J. ; Liang J. ; Jaroniec M. ; Qiao S. Z. Energy Environ. Sci. 2012, 5 (5), 6717.
doi: 10.1039/C2EE03479D |
4 |
Cao S. ; Yu J. J. Phys. Chem. Lett. 2014, 5 (12), 2101.
doi: 10.1021/jz500546b |
5 |
Zhao Z. ; Sun Y. ; Dong F. Nanoscale 2015, 7 (1), 15.
doi: 10.1039/C4NR03008G |
6 |
Wang Y. ; Wang X. ; Antonietti M. Angew. Chem. Int. Ed. 2012, 51 (1), 68.
doi: 10.1002/anie.201101182 |
7 |
Wang Z. ; Chen M. ; Huang Y. ; Shi X. ; Zhang Y. ; Huang T. ; Cao J. ; Ho W. ; Lee S. C. Appl. Catal. B 2018, 239, 352.
doi: 10.1016/j.apcatb.2018.08.030 |
8 |
Tang J.-Y. ; Kong X. Y. ; Ng B.-J. ; Chew Y.-H. ; Mohamed A. R. ; Chai S.-P. Catal. Sci. Technol. 2019, 9 (9), 2335.
doi: 10.1039/C9CY00449A |
9 |
Xue J. ; Fujitsuka M. ; Majima T. Phys. Chem. Chem. Phys. 2019, 21 (5), 2318.
doi: 10.1039/C8CP06922K |
10 |
Wu M. ; Gong Y. ; Nie T. ; Zhang J. ; Wang R. ; Wang H. ; He B. J. Mater. Chem. A 2019, 7 (10), 5324.
doi: 10.1039/C8TA12076E |
11 |
Zhang D. ; Tan G. ; Wang M. ; Li B. ; Dang M. ; Ren H. ; Xia A. Mater. Res. Bull. 2020, 122, 110685.
doi: 10.1016/j.materresbull.2019.110685 |
12 |
Guo Q. ; Zhang Y. ; Zhang H.-S. ; Liu Y. ; Zhao Y.-J. ; Qiu J. ; Dong G. Adv. Funct. Mater. 2017, 27 (42), 1703711.
doi: 10.1002/adfm.201703711 |
13 |
Ong W.-J. ; Tan L.-L. ; Ng Y. H. ; Yong S.-T. ; Chai S.-P. Chem. Rev. 2016, 116 (12), 7159.
doi: 10.1021/acs.chemrev.6b00075 |
14 |
Martin D. J. ; Qiu K. ; Shevlin S. A. ; Handoko A. D. ; Chen X. ; Guo Z. ; Tang J. Angew. Chem. Int. Ed. 2014, 53 (35), 9240.
doi: 10.1002/anie.201403375 |
15 |
Frank S. N. ; Bard A. J. J. Am. Chem. Soc. 1977, 99 (14), 4667.
doi: 10.1021/ja00456a024 |
16 |
Huang Y. ; Zhu D. ; Zhang Q. ; Zhang Y. ; Cao J.-J. ; Shen Z. ; Ho W. ; Lee S. C. Appl. Catal. B 2018, 234, 70.
doi: 10.1016/j.apcatb.2018.04.039 |
17 |
Huang Y. ; Liang Y. ; Rao Y. ; Zhu D. ; Cao J.-J. ; Shen Z. ; Ho W. ; Lee S. C. Environ. Sci. Technol. 2017, 51 (5), 2924.
doi: 10.1021/acs.est.6b04460 |
18 |
Huang Y. ; Wang W. ; Zhang Q. ; Cao J.-J. ; Huang R.-J. ; Ho W. ; Lee S. C. Sci. Rep. 2016, 6 (1), 23435.
doi: 10.1038/srep23435 |
19 |
Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8 (1), 76.
doi: 10.1038/nmat2317 |
20 |
Wang Y. ; Rao L. ; Wang P. ; Shi Z. ; Zhang L. Appl. Catal. B 2020, 262, 118308.
doi: 10.1016/j.apcatb.2019.118308 |
21 |
Peng G. ; Wu J. ; Wang M. ; Niklas J. ; Zhou H. ; Liu C. Nano Lett. 2020, 20 (4), 2879.
doi: 10.1021/acs.nanolett.0c00698 |
22 |
Wang Z. ; Huang Y. ; Ho W. ; Cao J. ; Shen Z. ; Lee S. C. Appl. Catal., B 2016, 199, 123.
doi: 10.1016/j.apcatb.2016.06.027 |
23 |
Wang Z. ; Huang Y. ; Chen L. ; Chen M. ; Cao J. ; Ho W. ; Lee S. C. J. Mater. Chem. A 2018, 6 (3), 972.
doi: 10.1039/C7TA09132J |
24 |
Lei F. ; Sun Y. ; Liu K. ; Gao S. ; Liang L. ; Pan B. ; Xie Y. J. Am. Chem. Soc. 2014, 136 (19), 6826.
doi: 10.1021/ja501866r |
25 | Wang Y. ; Shen S. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36 (3), 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
26 |
Zhang C. ; Li Y. ; Shuai D. ; Shen Y. ; Xiong W. ; Wang L. Chemosphere 2019, 214, 462.
doi: 10.1016/j.chemosphere.2018.09.137 |
27 |
Jourshabani M. ; Lee B.-K. ; Shariatinia Z. Appl. Catal. B 2020, 276, 119157.
doi: 10.1016/j.apcatb.2020.119157 |
28 |
He D. ; Zhang C. ; Zeng G. ; Yang Y. ; Huang D. ; Wang L. ; Wang H. Appl. Catal. B 2019, 258, 117957.
doi: 10.1016/j.apcatb.2019.117957 |
29 |
Li Y. ; Li X. ; Zhang H. ; Fan J. ; Xiang Q. J. Mater. Sci. Technol. 2020, 56, 69.
doi: 10.1016/j.jmst.2020.03.033 |
30 |
Tang S. ; Zhu Y. ; Li H. ; Xu H. ; Yuan S. Int. J. Hydrog. Energy 2019, 44 (59), 30935.
doi: 10.1016/j.ijhydene.2019.10.020 |
31 |
Dong G. ; Shibuya R. ; Akiba C. ; Saji S. ; Kondo T. ; Nakamura J. Science 2016, 351 (6271), 361.
doi: 10.1126/science.aad0832 |
32 |
Liao J. ; Cui W. ; Li J. ; Sheng J. ; Wang H. ; Dong X. A. ; Chen P. ; Jiang G. ; Wang Z. ; Dong F. Chem. Eng. J. 2020, 379, 122282.
doi: 10.1016/j.cej.2019.122282 |
33 |
Cao J. ; Pan C. ; Ding Y. ; Li W. ; Lv K. ; Tang H. J. Environ. Chem. Eng. 2019, 7 (2), 102984.
doi: 10.1016/j.jece.2019.102984 |
34 |
Cao J. ; Nie W. ; Huang L. ; Ding Y. ; Lv K. ; Tang H. Appl. Catal. B 2019, 241, 18.
doi: 10.1016/j.apcatb.2018.09.007 |
35 | Huang J. ; Du J. ; Du H. ; Xu G. ; Yuan Y. Acta Phys. -Chim. Sin. 2020, 36 (7), 1905056. |
黄娟娟; 杜建梅; 杜海威; 徐更生; 袁玉鹏; 物理化学学报, 2020, 36 (7), 1905056.
doi: 10.3866/PKU.WHXB201905056 |
|
36 |
Mo R. ; Li J. ; Tang Y. ; Li H. ; Zhong J. Appl. Surf. Sci. 2019, 476, 552.
doi: 10.1016/j.apsusc.2019.01.085 |
37 |
Li H. ; Jin C. ; Wang Z. ; Liu Y. ; Wang P. ; Zheng Z. ; Whangbo M.-H. ; Kou L. ; Li Y. ; Dai Y. ; et al Chem. Eng. J. 2019, 369, 263.
doi: 10.1016/j.cej.2019.03.095 |
38 |
Zhang J. ; Huang Y. ; Nie T. ; Wang R. ; He B. ; Han B. ; Wang H. ; Tian Y. ; Gong Y. Appl. Surf. Sci. 2020, 499, 143942.
doi: 10.1016/j.apsusc.2019.143942 |
39 |
Wang H. ; Li M. ; Li H. ; Lu Q. ; Zhang Y. ; Yao S. Mater. Des. 2019, 162, 210.
doi: 10.1016/j.matdes.2018.11.049 |
40 |
Zhou C. ; Zeng Z. ; Zeng G. ; Huang D. ; Xiao R. ; Cheng M. ; Zhang C. ; Xiong W. ; Lai C. ; Yang Y. ; et al J. Hazard. Mater. 2019, 380, 120815.
doi: 10.1016/j.jhazmat.2019.120815 |
41 |
Zhang Y. ; Gao J. ; Chen Z. J. Colloid Interface Sci. 2019, 535, 331.
doi: 10.1016/j.jcis.2018.10.012 |
42 |
Wu J. ; Li N. ; Fang H.-B. ; Li X. ; Zheng Y.-Z. ; Tao X. Chem. Eng. J. 2019, 358, 20.
doi: 10.1016/j.cej.2018.09.208 |
43 |
Zhang X. ; Zhao R. ; Zhang N. ; Su Y. ; Liu Z. ; Gao R. ; Du C. Appl. Catal. B 2020, 263, 118316.
doi: 10.1016/j.apcatb.2019.118316 |
44 |
Xie Y. ; Li Y. ; Huang Z. ; Zhang J. ; Jia X. ; Wang X.-S. ; Ye J. Appl. Catal. B 2020, 265, 118581.
doi: 10.1016/j.apcatb.2019.118581 |
45 |
Ho W. ; Zhang Z. ; Lin W. ; Huang S. ; Zhang X. ; Wang X. ; Huang Y. ACS Appl. Mater. Interfaces 2015, 7 (9), 5497.
doi: 10.1021/am509213x |
46 |
Liang L. ; Shi L. ; Wang F. ; Yao L. ; Zhang Y. ; Qi W. Int. J. Hydrog. Energy 2019, 44 (31), 16315.
doi: 10.1016/j.ijhydene.2019.05.001 |
47 |
Xue Y. ; Kong X. ; Guo Y. ; Liang Z. ; Cui H. ; Tian J. J. Materiomics 2020, 6 (1), 128.
doi: 10.1016/j.jmat.2020.01.006 |
48 |
Wang Z. ; Huang Y. ; Chen M. ; Shi X. ; Zhang Y. ; Cao J. ; Ho W. ; Lee S. C. ACS Appl. Mater. Interfaces 2019, 11 (11), 10651.
doi: 10.1021/acsami.8b21987 |
49 |
Guo S. ; Zhang H. ; Yang P. ; Chen Y. ; Yu X. ; Yu B. ; Zhao Y. ; Yang Z. ; Liu Z. Catal. Sci. Technol. 2019, 9 (10), 2485.
doi: 10.1039/C8CY02509F |
50 |
Shan X. ; Ge G. ; Zhao Z. ChemCatChem 2019, 11 (5), 1534.
doi: 10.1002/cctc.201801803 |
51 |
Yang Z. ; Chu D. ; Jia G. ; Yao M. ; Liu B. Appl. Surf. Sci. 2020, 504, 144407.
doi: 10.1016/j.apsusc.2019.144407 |
52 |
Tian Y. ; Zhou L. ; Zhu Q. ; Lei J. ; Wang L. ; Zhang J. ; Liu Y. Nanoscale 2019, 11 (43), 20638.
doi: 10.1039/C9NR06802C |
53 |
Liu M. ; Zhang D. ; Han J. ; Liu C. ; Ding Y. ; Wang Z. ; Wang A. Chem. Eng. J. 2020, 382, 123017.
doi: 10.1016/j.cej.2019.123017 |
54 |
Liang X. ; Wang G. ; Dong X. ; Wang G. ; Ma H. ; Zhang X. ACS Appl. Nano Mater. 2019, 2 (1), 517.
doi: 10.1021/acsanm.8b02089 |
55 |
Shen M. ; Zhang L. ; Wang M. ; Tian J. ; Jin X. ; Guo L. ; Wang L. ; Shi J. J. Mater. Chem. A 2019, 7 (4), 1556.
doi: 10.1039/C8TA09302D |
56 |
Jiang L. ; Li J. ; Wang K. ; Zhang G. ; Li Y. ; Wu X. Appl. Catal. B 2020, 260, 118181.
doi: 10.1016/j.apcatb.2019.118181 |
57 |
Zhang Y. ; Di J. ; Ding P. ; Zhao J. ; Gu K. ; Chen X. ; Yan C. ; Yin S. ; Xia J. ; Li H. J. Colloid Interface Sci. 2019, 553, 530.
doi: 10.1016/j.jcis.2019.06.012 |
58 |
Lei J. ; Chen B. ; Lv W. ; Zhou L. ; Wang L. ; Liu Y. ; Zhang J. ACS Sustain. Chem. Eng. 2019, 7 (19), 16467.
doi: 10.1021/acssuschemeng.9b03678 |
59 |
Wang X. ; Wu L. ; Wang Z. ; Wu H. ; Zhou X. ; Ma H. ; Zhong H. ; Xing Z. ; Cai G. ; Jiang C. ; et al Sol. RRL 2019, 3 (4), 1800298.
doi: 10.1002/solr.201800298 |
60 |
Sun H. ; Wei K. ; Wu D. ; Jiang Z. ; Zhao H. ; Wang T. ; Zhang Q. ; Wong P. K. Appl. Catal. B 2020, 264, 118480.
doi: 10.1016/j.apcatb.2019.118480 |
61 |
Zhang Y. ; Wu L. ; Zhao X. ; Zhao Y. ; Tan H. ; Zhao X. ; Ma Y. ; Zhao Z. ; Song S. ; Wang Y. ; et al Adv. Energy Mater. 2018, 8 (25), 1801139.
doi: 10.1002/aenm.201801139 |
62 |
Lin L. ; Yu Z. ; Wang X. Angew. Chem. Int. Ed. 2019, 58 (19), 6164.
doi: 10.1002/anie.201809897 |
63 |
Wang Y. ; Rao L. ; Wang P. ; Guo Y. ; Shi Z. ; Guo X. ; Zhang L. Appl. Surf. Sci. 2020, 505, 144576.
doi: 10.1016/j.apsusc.2019.144576 |
64 |
Zhou M. ; Dong G. ; Ma J. ; Dong F. ; Wang C. ; Sun J. Appl. Catal. B 2020, 273, 119007.
doi: 10.1016/j.apcatb.2020.119007 |
65 |
Zhang H. ; Tang Y. ; Liu Z. ; Zhu Z. ; Tang X. ; Wang Y. Chem. Phys. Lett. 2020, 751, 137467.
doi: 10.1016/j.cplett.2020.137467 |
66 |
Feng Q. J. Phys.: Condens. Matter 2020, 32 (44), 445602.
doi: 10.1088/1361-648x/aba387 |
67 |
Panigrahi P. ; Kumar A. ; Karton A. ; Ahuja R. ; Hussain T. Int. J. Hydrog. Energy 2020, 45 (4), 3035.
doi: 10.1016/j.ijhydene.2019.11.184 |
68 |
Wang X. ; Li D. ; Nan Z. Sep. Purif. Technol. 2019, 224, 152.
doi: 10.1016/j.seppur.2019.04.088 |
69 |
Hu C. ; Wang M.-S. ; Chen C.-H. ; Chen Y.-R. ; Huang P.-H. ; Tung K.-L. J. Membr. Sci. 2019, 580, 1.
doi: 10.1016/j.memsci.2019.03.012 |
70 |
Wang H. ; Bu Y. ; Wu G. ; Zou X. Dalton Trans. 2019, 48 (31), 11724.
doi: 10.1039/C9DT01261C |
71 |
Lv H. ; Huang Y. ; Koodali R. T. ; Liu G. ; Zeng Y. ; Meng Q. ; Yuan M. ACS Appl. Mater. Interfaces 2020, 12 (11), 12656.
doi: 10.1021/acsami.9b19057 |
72 |
Chu K. ; Li Q.-Q. ; Liu Y.-P. ; Wang J. ; Cheng Y.-H. Appl. Catal. B 2020, 267, 118693.
doi: 10.1016/j.apcatb.2020.118693 |
73 |
Li Z. ; Gu G. ; Hu S. ; Zou X. ; Wu G. Chin. J. Catal. 2019, 40 (8), 1178.
doi: 10.1016/S1872-2067(19)63364-4 |
74 |
Hu X. ; Zhang W. ; Yong Y. ; Xu Y. ; Wang X. ; Yao X. Appl. Surf. Sci. 2020, 510, 145413.
doi: 10.1016/j.apsusc.2020.145413 |
75 |
Iqbal W. ; Yang B. ; Zhao X. ; Rauf M. ; Mohamed I. M. A. ; Zhang J. ; Mao Y. Catal. Sci. Technol. 2020, 10 (2), 549.
doi: 10.1039/C9CY02111F |
76 |
Lin W. ; Lu K. ; Zhou S. ; Wang J. ; Mu F. ; Wang Y. ; Wu Y. ; Kong Y. Appl. Surf. Sci. 2019, 474, 194.
doi: 10.1016/j.apsusc.2018.03.140 |
77 |
Zhou P. ; Meng X. ; Li L. ; Sun T. J. Alloys Compd. 2020, 827, 154259.
doi: 10.1016/j.jallcom.2020.154259 |
78 |
Wang K. ; Fu J. ; Zheng Y. Appl. Catal. B 2019, 254, 270.
doi: 10.1016/j.apcatb.2019.05.002 |
79 |
Chen D. ; Liu J. ; Jia Z. ; Fang J. ; Yang F. ; Tang Y. ; Wu K. ; Liu Z. ; Fang Z. J. Hazard. Mater. 2019, 361, 294.
doi: 10.1016/j.jhazmat.2018.09.006 |
80 |
Yu Y. ; Wu S. ; Gu J. ; Liu R. ; Wang Z. ; Chen H. ; Jiang F. J. Hazard. Mater. 2020, 384, 121247.
doi: 10.1016/j.jhazmat.2019.121247 |
81 |
Phang S. J. ; Tan L.-L. Catal. Sci. Technol. 2019, 9 (21), 5882.
doi: 10.1039/C9CY01452G |
82 |
Dong G. ; Zhao L. ; Wu X. ; Zhu M. ; Wang F. Appl. Catal. B 2019, 245, 459.
doi: 10.1016/j.apcatb.2019.01.013 |
83 |
Zhao L. ; Dong G. ; Zhang L. ; Lu Y. ; Huang Y. ACS Appl. Mater. Interfaces 2019, 11 (10), 10042.
doi: 10.1021/acsami.9b00111 |
84 |
Liu J. ; Xiong C. ; Jiang S. ; Wu X. ; Song S. Appl. Catal. B 2019, 249, 282.
doi: 10.1016/j.apcatb.2019.03.014 |
85 |
Li X.-H. ; Chen W.-L. ; He P. ; Wang T. ; Liu D. ; Li Y.-W. ; Li Y.-G. ; Wang E.-B. Inorg. Chem. Front. 2019, 6 (11), 3315.
doi: 10.1039/C9QI01093A |
86 |
Vu N.-N. ; Nguyen C.-C. ; Kaliaguine S. ; Do T.-O. ChemSusChem 2019, 12 (1), 291.
doi: 10.1002/cssc.201802394 |
87 |
Bellamkonda S. ; Shanmugam R. ; Gangavarapu R. R. J. Mater. Chem. A 2019, 7 (8), 3757.
doi: 10.1039/C8TA10580D |
88 |
Zhang Y. ; Thomas A. ; Antonietti M. ; Wang X. J. Am. Chem. Soc. 2009, 131 (1), 50.
doi: 10.1021/ja808329f |
89 |
Ge G. ; Zhao Z. Catal. Sci. Technol. 2019, 9 (2), 266.
doi: 10.1039/C8CY02006J |
90 |
Li W. ; Guo Z. ; Jiang L. ; Zhong L. ; Li G. ; Zhang J. ; Fan K. ; Gonzalez S. ; Jin K. ; Xu C. ; et al Chem. Sci. 2020, 11 (10), 2716.
doi: 10.1039/C9SC05060D |
91 |
Xing W. ; Tu W. ; Ou M. ; Wu S. ; Yin S. ; Wang H. ; Chen G. ; Xu R. ChemSusChem 2019, 12 (9), 2029.
doi: 10.1002/cssc.201801431 |
92 |
Zhou P. ; Hou X. ; Chao Y. ; Yang W. ; Zhang W. ; Mu Z. ; Lai J. ; Lv F. ; Yang K. ; Liu Y. ; et al Chem. Sci. 2019, 10 (23), 5898.
doi: 10.1039/C9SC00658C |
93 |
Zhou P. ; Lv F. ; Li N. ; Zhang Y. ; Mu Z. ; Tang Y. ; Lai J. ; Chao Y. ; Luo M. ; Lin F. ; et al Nano Energy 2019, 56, 127.
doi: 10.1016/j.nanoen.2018.11.033 |
94 |
Nguyen C.-C. ; Sakar M. ; Vu M.-H. ; Do T.-O. Ind. Eng. Chem. Res. 2019, 58 (9), 3698.
doi: 10.1021/acs.iecr.8b05792 |
95 |
Huang Y. ; Wang P. ; Wang Z. ; Rao Y. ; Cao J.-J. ; Pu S. ; Ho W. ; Lee S. C. Appl. Catal. B 2019, 240, 122.
doi: 10.1016/j.apcatb.2018.08.078 |
96 |
Huang Y. ; Zhang J. ; Wang Z. ; Liu Y. ; Wang P. ; Cao J.-j. ; Ho W. Sol. RRL 2020, 4 (8), 2000170.
doi: 10.1002/solr.202000170 |
97 |
Cao J. ; Huang Y. Sci. Technol. Rev. 2016, 17 (34)
doi: 10.3981/j.issn.1000-7857.2016 |
98 | Huang, Y.; Wang, W.; Zhang, Y.; Cao, J.; Huang, R.; Wang, X. Chapter 10—Synthesis and Applications of Nanomaterials with High Photocatalytic Activity on Air Purification. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Wang, X., Chen, X., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 299-325. |
[1] | 曹玥晗, 郭瑞, 马敏智, 黄泽皑, 周莹. 活性位点电子密度变化对光催化CO2活化和选择转化的影响[J]. 物理化学学报, 2024, 40(1): 2303029 - . |
[2] | 张珹博, 陶晓萍, 蒋文超, 郭俊雪, 张鹏飞, 李灿, 李仁贵. 微波辅助合成促进铬酸铋晶体的光生电荷分离[J]. 物理化学学报, 2024, 40(1): 2303034 - . |
[3] | 赖可溱, 李丰彦, 李宁, 高旸钦, 戈磊. 金属-有机骨架衍生的Ni-CNT/ZnIn2S4异质结用于光催化产氢及其电荷转移途径的确定[J]. 物理化学学报, 2024, 40(1): 2304018 - . |
[4] | 宋千伟, 何观朝, 费慧龙. 基于单原子催化剂的光热催化转化:原理和应用[J]. 物理化学学报, 2023, 39(9): 2212038 -0 . |
[5] | 张怡宁, 高明, 陈松涛, 王会琴, 霍鹏伟. Ag/CN/ZnIn2S4 S型异质结等离子体光催化剂的制备及其增强光还原CO2研究[J]. 物理化学学报, 2023, 39(6): 2211051 - . |
[6] | 罗铖, 龙庆, 程蓓, 朱必成, 王临曦. Pt-C3N4/BiOCl S型异质结应用于光催化CO2还原的理论计算研究[J]. 物理化学学报, 2023, 39(6): 2212026 - . |
[7] | 张珂瑜, 李云锋, 袁仕丹, 张洛红, 王倩. S型异质结H2O2光催化剂的研究进展[J]. 物理化学学报, 2023, 39(6): 2212010 - . |
[8] | 孙涛, 李晨曦, 鲍钰鹏, 樊君, 刘恩周. S-型MnCo2S4/g-C3N4异质结光催化产氢性能研究[J]. 物理化学学报, 2023, 39(6): 2212009 - . |
[9] | 吴新鹤, 陈郭强, 王娟, 李金懋, 王国宏. S-Scheme异质结光催化产氢研究进展[J]. 物理化学学报, 2023, 39(6): 2212016 -0 . |
[10] | 王中辽, 汪静, 张金锋, 代凯. 光激发电荷在光催化氧化还原反应中的全利用[J]. 物理化学学报, 2023, 39(6): 2209037 - . |
[11] | 王吉超, 乔秀, 史维娜, 贺景, 陈军, 张万庆. 多面体状Cu2O修饰片状BiOI的S型异质结构筑及光催化水蒸气中CO2转化性能研究[J]. 物理化学学报, 2023, 39(6): 2210003 - . |
[12] | 昝忠奇, 李喜宝, 高晓明, 黄军同, 罗一丹, 韩露. 0D/2D碳氮量子点(CNQDs)/BiOBr复合的S型异质结高效光催化降解和产H2O2[J]. 物理化学学报, 2023, 39(6): 2209016 - . |
[13] | 周文杰, 景启航, 李家馨, 陈颖芝, 郝国栋, 王鲁宁. 有机光催化剂用于太阳能水分解:分子水平和聚集体水平改性[J]. 物理化学学报, 2023, 39(5): 2211010 -0 . |
[14] | 雷永刚, 赵天宇, 黄锦鸿, 张颖贞, 臧雪瑞, 李晓, 蔡伟龙, 黄剑莹, 胡军, 赖跃坤. 金属碳化钨与液相染料光敏剂协同促进光催化制氢[J]. 物理化学学报, 2023, 39(4): 2206006 -0 . |
[15] | 项景超, 李静君, 杨雪, 高水英, 曹荣. 阳离子镍基MOF自组装CdS/PFC-8催化剂用于可见光光催化选择性苯甲醇氧化耦合产氢[J]. 物理化学学报, 2023, 39(4): 2205039 -0 . |
|