物理化学学报 >> 2022, Vol. 38 >> Issue (6): 2106008.doi: 10.3866/PKU.WHXB202106008
所属专题: 面向电化学储能与转化的表界面工程
收稿日期:
2021-06-02
录用日期:
2021-07-01
发布日期:
2021-07-07
通讯作者:
从广涛,卢怡君
E-mail:gtcong@szu.edu.cn;yichunlu@mae.cuhk.edu.hk
作者简介:
Guangtao Cong received his Ph.D.degree in Mechanical and Automation Engineering from The Chinese University of Hong Kong (CUHK) in 2018. Dr.Cong worked as a research associate under the supervision of Prof.Yi-Chun Lu at CUHK before he joined the College of Chemistry and Environmental Engineering at Shenzhen University as an Assistant Professor.Dr.Cong's research interests focus on organic electrodes.
Guangtao Cong1,*(), Yi-Chun Lu2,*(
)
Received:
2021-06-02
Accepted:
2021-07-01
Published:
2021-07-07
Contact:
Guangtao Cong,Yi-Chun Lu
E-mail:gtcong@szu.edu.cn;yichunlu@mae.cuhk.edu.hk
About author:
Email: yichunlu@mae.cuhk.edu.hk (Y.L.)Supported by:
摘要:
液流电池因为具有高储能效率,低成本,以及可解耦的能源储存和功率输出设计,被广泛认为是适用于大型储能的首选技术。但是长期以来,液流电池在电网中的大规模部署一直受限于现有的金属基活性材料的高成本和较低的储能密度。因其潜在的低成本,丰富的原材料来源,高度可调的分子结构,具有氧化还原活性的有机分子作为潜在的液流电池活性材料,受到越来越多的关注。本文首先介绍了液流电池的工作机制,以提升非水系有机液流电池的储能密度的策略为重点,总结了非水系液流电池中有机活性材料的研究进展。并讨论了这些策略存在的问题和未来的发展方向。
从广涛, 卢怡君. 提升液流电池能量密度的策略[J]. 物理化学学报, 2022, 38(6): 2106008.
Guangtao Cong, Yi-Chun Lu. Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries[J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106008.
Table 1
Carbonyl compounds for non-aqueous anolytes."
# | Molecule | Electrolyte | Solubility | Redox potential/V vs. Ag/Ag+ | Ref. |
1 | ![]() | 1.2 mol·L-1 TEA-TFSI in MeCN | 2.0 mol·L-1 in MeCN | -1.64 | |
2 | ![]() | 0.1 mol·L-1 TEABF4 in MeCN | 4.3 mol·L-1 in MeCN | -2.16 | |
3 | ![]() | 1.0 mol·L-1 LiTFSI in DME | 0.7 mol·L-1 in DME | -1.79 | |
4 | ![]() | 0.5 mol·L-1 TEAPF6 in MeCN | 0.01 mol·L-1 in MeCN | -1.97 | |
5 | ![]() | 0.1 mol·L-1 LiBF4 in MeCN | 1.6 mol·L-1 in MeCN | -1.0 and -1.4 | |
6 | ![]() | 1.0 mol·L-1 TEABF4 in MeCN | 0.47 mol·L-1 in MeCN | -1.33 and -1.89 | |
7 | ![]() | 1.0 mol·L-1 LiTFSI/MeCN | 5.7 mol·L-1 in MeCN | -1.58 |
Table 2
Key performance parameters of representative high-potential catholytes."
# | Molecule | Electrolyte | Solubility | Redox potential/V vs. Li/Li+ | Ref. |
1 | ![]() | 0.2 mol·L–1 LiBF4 in PC b | 0.18 mol·L–1 | 4.0 | |
2 | ![]() | 0.2 mol·L–1 LiBF4 in PC b | Liquid | 4.0 | |
3 | ![]() | 0.2 mol·L–1 LiBF4 in PC b | liquid | 4.0 | |
4 | ![]() | 0.2 mol·L–1 LiBF4 in PC b | liquid | 4.0 | |
5 | ![]() | 0.5 mol·L–1 LiPF6 in MeCN | 1.7 mol·L–1 | 0.8 a | |
6 | ![]() | 0.5 mol·L–1 TBAPF6 in MeCN | 0.58 mol·L–1 | 1.33 a | |
7 | ![]() | 0.5 mol·L–1 TBAPF6 in MeCN | 1.5 mol·L–1 | 0.82 a |
Fig 6
(a) Photo image of BQ-LiTFSI OEE with a molar ratio of 1 : 1; (b) snapshots of MD simulations of BQ-LiTFSI OEE. C: Brown, O: red, H: pink, Li: purple, N: blue, S: yellow and F: light gray; (c, d) molecular interactions of BQ-LiTFSI OEE; (e) photo image of Li/Na/K-TEMPO OEEs with molar ratios of 1 : 5, 1 : 2, 1 : 5, respectively; (f-g) MD simulations of the molecular interactions of Li-TEMPO OEE. (h) photo images of Fc-1-Li, Fc-2-Li, and Fc-2-Na OEEs at the molar ratio of 2 : 1; (i, j) the molecular interactions of Fc-1-Li and Fc-2-Li OEEs. Adapted from Wiley publisher 44."
Table 3
Comparison of the representative strategies to improve the energy density of NORFBs."
Strategies | Advantages | Disadvantages | |
Expanding the cell voltage | Developing low-potential anolytes | Widen the output voltage without obviously affecting the properties of electrolytes | Require electrolytes with low cathodic limits |
Developing high-potential catholytes | Widen the output voltage without obviously affecting the properties of electrolytes | Require electrolytes with high anodic limits | |
Maximizing the concentration of the ROMs | Molecular engineering of the organic molecule | Efficient Quantum mechanics assisted molecular optimization. | Time consuming synthesis of ROMs, high viscosity, precipitation of salt and ROMs |
Eutectic electrolyte | Low material cost, facile preparation process | High viscosity, precipitation of salt and ROMs | |
Semi-solid suspension | Low material cost, facile preparation process | Phase separation, salt precipitation, high viscosity and energy input | |
Redox-targeting approach | Multiply the energy density without obviously affecting the properties of electrolytes | Low power output | |
Achieving reversible multi-electron transfer | Multiply the energy density without obviously affecting the properties of electrolytes | High reactivity, poor lifetime of high valence state ROMs |
1 |
Soloveichik G. L. Chem. Rev. 2015, 115, 11533.
doi: 10.1021/cr500720t |
2 |
Winsberg J. ; Hagemann T. ; Janoschka T. ; Hager M. D. ; Schubert U. S. Angew. Chem. Int. Ed. 2017, 56, 686.
doi: 10.1002/anie.201604925 |
3 |
Wei X. ; Pan W. ; Duan W. ; Hollas A. ; Yang Z. ; Li B. ; Nie Z. ; Liu J. ; Reed D. ; Wang W. ; et al ACS Energy Lett. 2017, 2, 2187.
doi: 10.1021/acsenergylett.7b00650 |
4 |
Muench S. ; Wild A. ; Friebe C. ; Häupler B. ; Janoschka T. ; Schubert U. S. Chem. Rev. 2016, 116, 9438.
doi: 10.1021/acs.chemrev.6b00070 |
5 |
Chen H. ; Cong G. ; Lu Y. C. J. Energy Chem. 2018, 27, 1304.
doi: 10.1016/j.jechem.2018.02.009 |
6 |
Yao Y. ; Lei J. ; Shi Y. ; Ai F. ; Lu Y. C. Nat. Energy 2021, 6, 582.
doi: 10.1038/s41560-020-00772-8 |
7 |
Li Z. ; Lu Y. C. Nat. Energy 2021, 6, 517.
doi: 10.1038/s41560-021-00804-x |
8 |
Wang C. ; Li X. ; Yu B. ; Wang Y. ; Yang Z. ; Wang H. ; Lin H. ; Ma J. ; Li G. ; Jin Z. ACS Energy Lett. 2020, 5, 411.
doi: 10.1021/acsenergylett.9b02676 |
9 |
Wang C. ; Yang Z. ; Wang Y. ; Zhao P. ; Yan W. ; Zhu G. ; Ma L. ; Yu B. ; Wang L. ; Li G. ; et al ACS Energy Lett. 2018, 3, 2404.
doi: 10.1021/acsenergylett.8b01296 |
10 |
Wang C. ; Yu B. ; Liu Y. ; Wang H. ; Zhang Z. ; Xie C. ; Li X. ; Zhang H. ; Jin Z. Energy Stor. Mater. 2021, 36, 417.
doi: 10.1016/j.ensm.2021.01.019 |
11 |
Kwabi D. G. ; Ji Y. ; Aziz M. J. Chem. Rev. 2020, 120, 6467.
doi: 10.1021/acs.chemrev.9b00599 |
12 |
Singh V. ; Kim S. ; Kang J. ; Byon H. R. Nano Res. 2019, 12, 1988.
doi: 10.1007/s12274-019-2355-2 |
13 |
Gentil S. ; Reynard D. ; Girault H. H. Curr. Opin. Electrochem. 2020, 21, 7.
doi: 10.1016/j.coelec.2019.12.006 |
14 |
Polcari D. ; Dauphin-Ducharme P. ; Mauzeroll J. Chem. Rev. 2016, 116, 13234.
doi: 10.1021/acs.chemrev.6b00067 |
15 |
Remya G. S. ; Suresh C. H. Phys. Chem. Chem. Phys. 2016, 18, 20615.
doi: 10.1039/C6CP02936A |
16 | McMurry J. E. Organic Chemistry, 8th ed. Boston: Cengage Learning, 2012. |
17 |
Williams D. L. ; Byrne J. J. ; Driscoll J. S. J. Electrochem. Soc. 1969, 116, 2.
doi: 10.1149/1.2411755 |
18 |
Wei X. ; Xu W. ; Huang J. ; Zhang L. ; Walter E. ; Lawrence C. ; Vijayakumar M. ; Henderson W. A. ; Liu T. ; Cosimbescu L. ; et al Angew. Chem. Int. Ed. 2015, 54, 8684.
doi: 10.1002/anie.201501443 |
19 |
Xing X. ; Huo Y. ; Wang X. ; Zhao Y. ; Li Y. Int. J. Hydrogen Energy 2017, 42, 17488.
doi: 10.1016/j.ijhydene.2017.03.034 |
20 |
Li Z. ; Li S. ; Liu S. ; Huang K. ; Fang D. ; Wang F. ; Peng S. Electrochem. Solid-State Lett. 2011, 14, A171.
doi: 10.1149/2.012112esl |
21 |
Huang J. ; Yang Z. ; Vijayakumar M. ; Duan W. ; Hollas A. ; Pan B. ; Wang W. ; Wei X. ; Zhang L. Adv. Sustain. Syst. 2018, 2, 1700131.
doi: 10.1002/adsu.201700131 |
22 |
Sevov C. S. ; Brooner R. E. M. ; Chénard E. ; Assary R. S. ; Moore J. S. ; Rodríguez-López J. ; Sanford M. S. J. Am. Chem. Soc. 2015, 137, 14465.
doi: 10.1021/jacs.5b09572 |
23 |
Wei X. ; Duan W. ; Huang J. ; Zhang L. ; Li B. ; Reed D. ; Xu W. ; Sprenkle V. ; Wang W. ACS Energy Lett. 2016, 1, 705.
doi: 10.1021/acsenergylett.6b00255 |
24 |
Xing X. ; Liu Q. ; Li J. ; Han Z. ; Wang B. ; Lemmon J. P. Chem. Commun. 2019, 55, 14214.
doi: 10.1039/C9CC07937H |
25 |
Duan W. ; Huang J. ; Kowalski J. A. ; Shkrob I. A. ; Vijayakumar M. ; Walter E. ; Pan B. ; Yang Z. ; Milshtein J. D. ; Li B. ; et al ACS Energy Lett. 2017, 2, 1156.
doi: 10.1021/acsenergylett.7b00261 |
26 |
McClelland B. J. Chem. Rev. 1964, 64, 301.
doi: 10.1021/cr60229a005 |
27 |
Holy N. L. Chem. Rev. 1974, 74, 243.
doi: 10.1021/cr60288a005 |
28 |
Gong K. ; Fang Q. ; Gu S. ; Li S. F. Y. ; Yan Y. Energy Environ. Sci. 2015, 8, 3515.
doi: 10.1039/C5EE02341F |
29 |
Yu J. ; Hu Y. S. ; Pan F. ; Zhang Z. ; Wang Q. ; Li H. ; Huang X. ; Chen L. Nat. Commun. 2017, 8, 14629.
doi: 10.1038/ncomms14629 |
30 |
Wang G. ; Huang B. ; Liu D. ; Zheng D. ; Harris J. ; Xue J. ; Qu D. J. Mater. Chem. A 2018, 6, 13286.
doi: 10.1039/C8TA03221A |
31 |
Cong G. ; Wang W. ; Lai N. C. ; Liang Z. ; Lu Y. C. Nat. Mater. 2019, 18, 390.
doi: 10.1038/s41563-019-0286-7 |
32 |
Zhang L. ; Zhang Z. ; Redfern P. C. ; Curtiss L. A. ; Amine K. Energy Environ. Sci. 2012, 5, 8204.
doi: 10.1039/C2EE21977H |
33 |
Huang J. ; Cheng L. ; Assary R. S. ; Wang P. ; Xue Z. ; Burrell A. K. ; Curtiss L. A. ; Zhang L. Adv. Energy Mater. 2015, 5, 1401782.
doi: 10.1002/aenm.201401782 |
34 |
Sevov C. S. ; Samaroo S. K. ; Sanford M. S. Adv. Energy Mater. 2017, 7, 1602027.
doi: 10.1002/aenm.201602027 |
35 |
Yan Y. ; Robinson S. G. ; Sigman M. S. ; Sanford M. S. J. Am. Chem. Soc. 2019, 141, 15301.
doi: 10.1021/jacs.9b07345 |
36 |
Robinson S. G. ; Yan Y. ; Hendriks K. H. ; Sanford M. S. ; Sigman M. S. J. Am. Chem. Soc. 2019, 141, 10171.
doi: 10.1021/jacs.9b04270 |
37 |
Shrestha A. ; Hendriks K. H. ; Sigman M. S. ; Minteer S. D. ; Sanford M. S. Chem. - A Eur. J. 2020, 26, 5369.
doi: 10.1002/chem.202000749 |
38 |
Cong G. ; Zhou Y. ; Li Z. ; Lu Y. C. ACS Energy Lett. 2017, 2, 869.
doi: 10.1021/acsenergylett.7b00115 |
39 |
Wang Y. ; Zhou H. Energy Environ. Sci. 2016, 9, 2267.
doi: 10.1039/C6EE00902F |
40 |
Zhang C. ; Zhang L. ; Ding Y. ; Guo X. ; Yu G. ACS Energy Lett. 2018, 3, 2875.
doi: 10.1021/acsenergylett.8b01899 |
41 |
Zhang C. ; Qian Y. ; Ding Y. ; Zhang L. ; Guo X. ; Zhao Y. ; Yu G. Angew. Chem. Int. Ed. 2019, 58, 7045.
doi: 10.1002/anie.201902433 |
42 |
Goeltz J. C. ; Matsushima L. N. Chem. Commun. 2017, 53, 9983.
doi: 10.1039/C7CC04837H |
43 |
Sinclair N. S. ; Poe D. ; Savinell R. F. ; Maginn E. J. ; Wainright J. S. J. Electrochem. Soc. 2021, 168, 020527.
doi: 10.1149/1945-7111/abe28a |
44 |
Zhang C. ; Chen H. ; Qian Y. ; Dai G. ; Zhao Y. ; Yu G. Adv. Mater. 2021, 33, 2008560.
doi: 10.1002/adma.202008560 |
45 |
Zhang C. ; Niu Z. ; Ding Y. ; Zhang L. ; Zhou Y. ; Guo X. ; Zhang X. ; Zhao Y. ; Yu G. Chem 2018, 4, 2814.
doi: 10.1016/j.chempr.2018.08.024 |
46 |
Takechi K. ; Kato Y. ; Hase Y. Adv. Mater. 2015, 27, 2501.
doi: 10.1002/adma.201405840 |
47 |
Cong G. ; Lu Y. C. Chem 2018, 4, 2732.
doi: 10.1016/j.chempr.2018.11.018 |
48 |
Duduta M. ; Ho B. ; Wood V. C. ; Limthongkul P. ; Brunini V. E. ; Carter W. C. ; Chiang Y. M. Adv. Energy Mater. 2011, 1, 511.
doi: 10.1002/aenm.201100152 |
49 |
Chen H. ; Zou Q. ; Liang Z. ; Liu H. ; Li Q. ; Lu Y. C. Nat. Commun. 2015, 6, 5877.
doi: 10.1038/ncomms6877 |
50 |
Chen H. ; Lu Y. C. Adv. Energy Mater. 2016, 6, 1502183.
doi: 10.1002/aenm.201502183 |
51 |
Chen H. ; Zhou Y. ; Lu Y. C. ACS Energy Lett. 2018, 3, 1991.
doi: 10.1021/acsenergylett.8b01257 |
52 |
Zhang X. ; Zhang P. ; Chen H. ChemSusChem 2021, 14, 1913.
doi: 10.1002/cssc.202100094 |
53 |
Wang Q. ; Zakeeruddin S. M. ; Wang D. ; Exnar I. ; Grätzel M. Angew. Chem. Int. Ed. 2006, 45, 8197.
doi: 10.1002/anie.200602891 |
54 |
Jia C. ; Pan F. ; Zhu Y. G. ; Huang Q. ; Lu L. ; Wang Q. Sci. Adv. 2015, 1, e1500886.
doi: 10.1126/sciadv.1500886 |
55 |
Huang Q. ; Yang J. ; Ng C. B. ; Jia C. ; Wang Q. Energy Environ. Sci. 2016, 9, 917.
doi: 10.1039/C5EE03764F |
56 |
Yan R. ; Wang Q. Adv. Mater. 2018, 30, 1802406.
doi: 10.1002/adma.201802406 |
57 |
Yu J. ; Fan L. ; Yan R. ; Zhou M. ; Wang Q. ACS Energy Lett. 2018, 3, 2314.
doi: 10.1021/acsenergylett.8b01420 |
58 |
Chen Y. ; Zhou M. ; Xia Y. ; Wang X. ; Liu Y. ; Yao Y. ; Zhang H. ; Li Y. ; Lu S. ; Qin W. ; et al Joule 2019, 3, 2255.
doi: 10.1016/j.joule.2019.06.007 |
59 |
Cheng Y. ; Wang X. ; Huang S. ; Samarakoon W. ; Xi S. ; Ji Y. ; Zhang H. ; Zhang F. ; Du Y. ; Feng Z. ; et al ACS Energy Lett. 2019, 4, 3028.
doi: 10.1021/acsenergylett.9b01939 |
60 |
Zhou M. ; Chen Y. ; Salla M. ; Zhang H. ; Wang X. ; Mothe S. R. ; Wang Q. Angew. Chem. Int. Ed. 2020, 59, 14286.
doi: 10.1002/anie.202004603 |
61 |
Huang Q. ; Li H. ; Grätzel M. ; Wang Q. Phys. Chem. Chem. Phys. 2013, 15, 1793.
doi: 10.1039/C2CP44466F |
62 |
Zhou M. ; Huang Q. ; Pham Truong T. N. ; Ghilane J. ; Zhu Y. G. ; Jia C. ; Yan R. ; Fan L. ; Randriamahazaka H. ; Wang Q. Chem 2017, 3, 1036.
doi: 10.1016/j.chempr.2017.10.003 |
63 |
Kwon G. ; Lee S. ; Hwang J. ; Shim H. S. ; Lee B. ; Lee M. H. ; Ko Y. ; Jung S. K. ; Ku K. ; Hong J. ; Kang K. Joule 2018, 2, 1771.
doi: 10.1016/j.joule.2018.05.014 |
64 |
Li Z. ; Lu Y. C. Chem 2018, 4, 2020.
doi: 10.1016/j.chempr.2018.08.032 |
65 |
Kwon G. ; Lee K. ; Lee M. H. ; Lee B. ; Lee S. ; Jung S. K. ; Ku K. ; Kim J. ; Park S. Y. ; Kwon J. E. ; et al Chem 2019, 5, 2642.
doi: 10.1016/j.chempr.2019.07.006 |
66 |
Ham Y. ; Ri V. ; Kim J. ; Yoon Y. ; Lee J. ; Kang K. ; An K. S. ; Kim C. ; Jeon S. Nano Res. 2021, 14, 1382.
doi: 10.1007/s12274-020-3187-9 |
67 |
Lee M. ; Hong J. ; Lee B. ; Ku K. ; Lee S. ; Park C. B. ; Kang K. Green Chem. 2017, 19, 2980.
doi: 10.1039/C7GC00849J |
68 |
Lee S. ; Lee K. ; Ku K. ; Hong J. ; Park S. Y. ; Kwon J. E. ; Kang K. Adv. Energy Mater. 2020, 10, 2001635.
doi: 10.1002/aenm.202001635 |
69 |
Attanayake N. H. ; Kowalski J. A. ; Greco K. V. ; Casselman M. D. ; Milshtein J. D. ; Chapman S. J. ; Parkin S. R. ; Brushett F. R. ; Odom S. A. Chem. Mater. 2019, 31, 4353.
doi: 10.1021/acs.chemmater.8b04770 |
70 |
Kowalski J. A. ; Casselman M. D. ; Kaur A. P. ; Milshtein J. D. ; Elliott C. F. ; Modekrutti S. ; Attanayake N. H. ; Zhang N. ; Parkin S. R. ; Risko C. ; et al J. Mater. Chem. A 2017, 5, 24371.
doi: 10.1039/C7TA05883G |
[1] | 杨晓兵,赵磊,隋旭磊,孟令辉,王振波. 基于磷钨酸功能化纳米纤维的超高质子/钒选择性的聚苯并咪唑膜在全钒液流电池中的应用[J]. 物理化学学报, 2019, 35(12): 1372 -1381 . |
[2] | 文越华, 高辰, 程杰, 潘军青, 曹高萍, 杨裕生. 电解液对全铅单液流电池电极性能的影响[J]. 物理化学学报, 2013, 29(11): 2354 -2360 . |
[3] | 刘东阳, 程杰, 潘军青, 文越华, 曹高萍, 杨裕生. HBF4溶液中全铅液流电池[J]. 物理化学学报, 2011, 27(11): 2571 -2576 . |
[4] | 文越华;张华民;钱鹏;赵平;周汉涛;衣宝廉. 全钒液流电池高浓度下V(IV)/V(V)的电极过程研究[J]. 物理化学学报, 2006, 22(04): 403 -408 . |
|