物理化学学报 >> 2022, Vol. 38 >> Issue (6): 2106010.doi: 10.3866/PKU.WHXB202106010
所属专题: 面向电化学储能与转化的表界面工程
崔柏桦1,2, 施毅2, 李根3, 陈亚楠3,*(), 陈伟1,2,4, 邓意达3,5,*(), 胡文彬1,3,*()
收稿日期:
2021-06-03
录用日期:
2021-07-12
发布日期:
2021-07-21
通讯作者:
陈亚楠,邓意达,胡文彬
E-mail:yananchen@tju.edu.cn;yida.deng@tju.edu.cn;wbhu@tju.edu.cn
作者简介:
Yanan Chen is a professor at the School of Materials Science and Engineering, Tianjin University. He received his joint Ph.D. from the University of Science and Technology Beijing/University of Maryland in 2017. He was an advanced innovative fellow at Tsinghua University before joining in Tianjin University. His research mainly focuses on nanomaterials, devices, and systems for advanced energy storage and conversion基金资助:
Baihua Cui1,2, Yi Shi2, Gen Li3, Yanan Chen3,*(), Wei Chen1,2,4, Yida Deng3,5,*(), Wenbin Hu1,3,*()
Received:
2021-06-03
Accepted:
2021-07-12
Published:
2021-07-21
Contact:
Yanan Chen,Yida Deng,Wenbin Hu
E-mail:yananchen@tju.edu.cn;yida.deng@tju.edu.cn;wbhu@tju.edu.cn
About author:
E-mail: yida.deng@tju.edu.cn (Y. D.)Supported by:
摘要:
氢气是一种清洁高效的能源载体,通过海水电解规模化制备氢气能够为应对全球能源挑战提供新的机遇。然而,缺乏高活性、高选择性和高稳定性的理想电极材料是在腐蚀性海水中连续电解过程的一个巨大挑战。为了缓解这一困境,需要从基础理论和实际应用两方面对材料进行深入研究。近年来,人们围绕电极材料的催化活性、选择性和耐腐蚀性进行了大量的探索。本文重点总结了高选择性和强耐腐蚀性材料的设计合成与作用机制。其中详细介绍了多种电极材料(如多金属氧化物、Ni/Fe/Co基复合材料、氧化锰包覆异质结构等)对氧气生成选择性的研究进展;系统论述了各种材料的抗腐蚀工程研究成果,主要讨论了本征抗腐蚀材料、外防护涂层和原位产生抗腐蚀物种三种情况。此外,提出了海水电解过程中存在的挑战和潜在的机遇。先进纳米材料的设计有望为解决海水电解中的氯化学问题提供新思路。
崔柏桦, 施毅, 李根, 陈亚楠, 陈伟, 邓意达, 胡文彬. 海水电解面临的挑战与机遇:含氯电化学中先进材料研究进展[J]. 物理化学学报, 2022, 38(6), 2106010. doi: 10.3866/PKU.WHXB202106010
Baihua Cui, Yi Shi, Gen Li, Yanan Chen, Wei Chen, Yida Deng, Wenbin Hu. Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry[J]. Acta Phys. -Chim. Sin. 2022, 38(6), 2106010. doi: 10.3866/PKU.WHXB202106010
Fig 3
The selective materials for seawater splitting. (a) TEM image of hexagonal NiFe LDH nanoplates and smaller FeOx particles, (b) Faradaic efficiency and current density of NiFe LDH on carbon support for OER 15; (c) the estimated amounts of Cl2 generated during 12 h of continuous electrolysis in neutral-buffered seawater electrolyte; (d, e) DFT calculation results of gas evolution reactions on metal hexacyanometallates 44. Reproduced with permission from Ref. 15, Copyright 2016, Wiley-VCH. Reproduced with permission from Ref. 44, Copyright 2018, Wiley-VCH."
Fig 5
The materials with inherently high resistance to seawater corrosion. (a) SEM images of Pt-Ru-Mo-decorated Ti mesh and (b) corresponding long-term stability for HER in seawater 60; (c) FESEM images of NCFPO/C@CC; (d) polarization curves of NCFPO/C@CC at a scan rate of 5 mV?s?1 (the gray area denotes the generation of hypochlorite ions); (e) the time-dependent reactive chlorine concentration profiles of NCFPO/C in the NaCl and NaCl + KOH electrolyte 62; (f) SEM and HRTEM images of Pt nanocrystallites on mh-3D MXene; (g) illustration of multilevel hollow MXene tailored low-Pt catalyst with multifunctional catalytic interface and its benefit in promoting the HER under multi-pH conditions; (h) chronopotentiometric response of 2.4% Pt@mh-3D MXene at a current density of 10 mA?cm?2 18. Adapted with permission from Ref. 60, Copyright 2016, Royal Society of Chemistry. Reproduced with permission from Ref. 62, Copyright 2019, American Chemical Society. Reproduced with permission from Ref. 18, Copyright 2020, WILEY-VCH."
Fig 6
The anti-corrosive materials with extrinsically protective layer. (a) Top panel: currents for OER (red) and CER (green) at E = 1.55 V, lower panel: corresponding selectivities toward OER (red) and CER (green); (b) illustration of the protecting mechanism of MnOx 48. (c) Time-dependent current density curve of CoMoP@C, 20% and 40% Pt/C in seawater; (d) time-dependent current density curve of CoMoP in seawater 74. Reproduced with permission from Ref. 48, Copyright 2018, American Chemical Society. Adopted with permission from Ref. 74, Copyright 2016, Royal Society of Chemistry."
Fig 7
The anti-corrosive materials with in situ generated anti-corrosive layer. (a) Fabrication and structure of the dual-layer NiFe/NiSx-Ni foam anode for seawater splitting; (b) durability tests (1000 h) recorded at a constant current of 400 mA?cm?2 of the seawater-splitting electrolyzer; (c) 3D X-ray micro tomography of anode: before seawater splitting and no activation, after 1000 h stability test in 1 mol?L?1 KOH + real seawater (activation carried out in 1 mol?L?1 KOH and 1 mol?L?1 KOH + 0.5 mol?L?1 NaCl), after 300 h stability test in 1 mol?L?1 KOH + 2 mol?L?1 NaCl (activation carried out in 1 mol?L?1 KOH and 1 mol?L?1 KOH + 2 mol?L?1 NaCl), Ni foam with electrodeposited NiFe (activated in 1 mol?L?1 KOH) after 8 h of stability test in 1 mol?L?1 KOH + 2 mol?L?1 NaCl 53; (d) durability tests of the electrolyzer at constant current densities of 100 and 500 mA?cm?2 in different electrolytes at 25 ℃; (e) corrosion resistance mechanism 12. Adopted with permission from Ref. 53, Copyright 2019, National Academy of Sciences. Reproduced with permission from Ref. 12, Copyright 2019, Springer Nature."
1 |
Kumaravel V. ; Abdel-Wahab A Energy Fuels 2018, 32, 6423.
doi: 10.1021/acs.energyfuels.8b00995 |
2 |
Jin H. Y. ; Wang X. S. ; Tang C. ; Vasileff A. ; Li L. Q. ; Slattery A. ; Qiao S. Z Adv. Mater. 2021, 33, 2007508.
doi: 10.1002/adma.202007508 |
3 |
Liu S. L. ; Hu Z. ; Wu Y. Z. ; Zhang J. F. ; Zhang Y. ; Cui B. H. ; Liu C. ; Hu S. ; Zhao N. Q. ; Han X. P. ; et al Adv. Mater. 2020, 32, 2006034.
doi: 10.1002/adma.202006034 |
4 |
Shan J. Q. ; Guo C. X. ; Zhu Y. H. ; Chen S. M. ; Song L. ; Jaroniec M. ; Zheng Y. ; Qiao S. Z Chem 2019, 5, 445.
doi: 10.1016/j.chempr.2018.11.010 |
5 | Luo P. ; Sun F. ; Deng J. ; Xu H. T. ; Zhang H. J. ; Wang Y Acta Phys. -Chim. Sin. 2018, 34 (12), 1397. |
罗盼; 孙芳; 邓菊; 许海涛; 张慧娟; 王煜; 物理化学学报, 2018, 34 (12), 1397.
doi: 10.3866/PKU.WHXB201804022 |
|
6 |
Hao C. Y. ; Wu Y. ; An Y. J. ; Cui B. H. ; Lin J. N. ; Li X. N. ; Wang D. H. ; Jiang M. H. ; Cheng Z. X. ; Hu S Mater. Today Energy 2019, 12, 453.
doi: 10.1016/j.mtener.2019.04.009 |
7 |
Zhou G. ; Guo Z. J. ; Shan Y. ; Wu S. Y. ; Zhang J. L. ; Yan K. ; Liu L. Z. ; Chuc P. K. ; Wu X. L Nano Energy 2019, 55, 42.
doi: 10.1016/j.nanoen.2018.10.047 |
8 |
Cheng F. F. ; Feng X. L. ; Chen X. ; Lin W. G. ; Rong J. F. ; Yang W. S Electrochim. Acta 2017, 251, 336.
doi: 10.1016/j.electacta.2017.08.098 |
9 |
Yu J. ; Li B. Q. ; Zhao C. X. ; Zhang Q Energy Environ. Sci. 2020, 13, 3253.
doi: 10.1039/D0EE01617A |
10 |
Senthilkumar S. T. ; Go W. ; Han J. ; Thuy L. P. T. ; Kishor K. ; Kima Y. ; Kim Y J. Mater. Chem. A 2019, 7, 22803.
doi: 10.1039/C9TA08321A |
11 |
Abe H. ; Murakami A. ; Tsunekawa S. ; Okada T. ; Wakabayashi T. ; Yoshida M. ; Nakayama M ACS Catal. 2021, 11, 6390.
doi: 10.1021/acscatal.0c05496 |
12 |
Yu L. ; Zhu Q. ; Song S. W. ; McElhenny B. ; Wang D. Z. ; Wu C. Z. ; Qin Z. J. ; Bao J. M. ; Yu Y. ; Chen S. ; et al Nat. Commun. 2019, 10, 5106.
doi: 10.1038/s41467-019-13092-7 |
13 |
Dresp S. ; Dionigi F. ; Loos S. ; de Araujo J. F. ; Spöri C. ; Gliech M. ; Dau H. ; Strasser P Adv. Energy Mater. 2018, 8, 1800338.
doi: 10.1002/aenm.201800338 |
14 |
d'Amore-Domenech R. ; Leo T. J ACS Sustain. Chem. Eng. 2019, 7, 8006.
doi: 10.1021/acssuschemeng.8b06779 |
15 |
Dionigi F. ; Reier T. ; Pawolek Z. ; Gliech M. ; Strasser P ChemSusChem 2016, 9, 962.
doi: 10.1002/cssc.201501581 |
16 |
Ko J. S. ; Johnson J. K. ; Johnson P. I. ; Xia Z. Y ChemCatChem 2020, 12, 4526.
doi: 10.1002/cctc.202000 |
17 |
Gayen P. ; Saha S. ; Ramani V ACS Appl. Energy Mater. 2020, 3, 4.
doi: 10.1021/acsaem.0c00383 |
18 |
Xiu L. Y. ; Pei W. ; Zhou S. ; Wang Z. Y. ; Yang P. J. ; Zhao J. J. ; Qiu J. S Adv. Funct. Mater. 2020, 1910028.
doi: 10.1002/adfm.201910028 |
19 |
Tong W. M. ; Forster M. ; Dionigi F. ; Dresp S. ; Erami R. S. ; Strasser P. ; Cowan A. J. ; Farràs P Nat. Energy 2020, 5, 367.
doi: 10.1038/s41560-020-0550-8 |
20 |
Song J. J. ; Wei C. ; Huang Z. F. ; Liu C. T. ; Zeng L. ; Wang X. ; Xu Z. C. J Chem. Soc. Rev. 2020, 49, 2196.
doi: 10.1039/C9CS00607A |
21 |
Exner K. S. ; Anton J. ; Jacob T. ; Over H Angew. Chem. 2016, 128, 7627.
doi: 10.1002/anie.201511804 |
22 |
Karlsson R. K. B. ; Cornell A Chem. Rev. 2016, 116, 2982.
doi: 10.1021/acs.chemrev.5b00389 |
23 |
Exner K. S. ; Anton J. ; Jacob T. ; Over H Angew. Chem. 2014, 126, 11212.
doi: 10.1002/ange.201406112 |
24 |
Sumaria V. ; Krishnamurthy D. ; Viswanathan V ACS Catal 2018, 8, 9034.
doi: 10.1021/acscatal.8b01432 |
25 |
Cheng C. Y. ; Kelsall G. H J. Appl. Electrochem. 2007, 37, 1203.
doi: 10.1007/s10800-007-9364-7 |
26 |
Amikam G. ; Natiu P. ; Gendel Y Int. J. Hydrog. Energy 2018, 43, 6504.
doi: 10.1016/j.ijhydene.2018.02.082 |
27 |
Exner K. S ChemElectroChem 2019, 6, 3401.
doi: 10.1002/celc.201900834 |
28 |
Lim T. ; Jung G. Y. ; Kim J. H. ; Park S. O. ; Park J. ; Kim Y. T. ; Kang S. J. ; Jeong H. Y. ; Kwak S. K. ; Joo S. H Nat. Commun. 2020, 11, 412.
doi: 10.1038/s41467-019-14272-1 |
29 |
Goryachev A. ; Pascuzzi M. E. C. ; Carla F. ; Weber T. ; Over H. ; Hensen E. J. M. ; Hofmann J. P Electrochim. Acta 2020, 336, 135713.
doi: 10.1016/j.electacta.2020.135713 |
30 |
Zeradjanin A. R. ; Menzel N. ; Schuhmann W. ; Strasser P Phys. Chem. Chem. Phys. 2014, 16, 13741.
doi: 10.1039/C4CP00896K |
31 |
Chen S. ; Huang H. ; Jiang P. ; Yang K. ; Diao J. F. ; Gong S. P. ; Liu S. ; Huang M. X. ; Wang H. ; Chen Q. W ACS Catal. 2020, 10, 1152.
doi: 10.1021/acscatal.9b04922 |
32 |
Lee Y. ; Suntivich J. ; May K. J. ; Perry E. E. ; Yang S. H J. Phys. Chem. Lett. 2012, 3, 399.
doi: 10.1021/jz2016507 |
33 |
Ge R. X. ; Li L. ; Su J. W. ; Lin Y. C. ; Tian Z. Q. ; Chen L Adv. Energy Mater. 2019, 9, 1901313.
doi: 10.1002/aenm.201901313 |
34 |
Abbott D. F. ; Lebedev D. ; Waltar K. ; Povia M. ; Nachtegaal M. ; Fabbri E. ; Coperet C. ; Schmidt T. J Chem. Mater. 2016, 28, 6591.
doi: 10.1021/acs.chemmater.6b02625 |
35 |
Rossmeisl J. ; Hansen H. A. ; Man I. C. ; Studt F. ; Abild-Pedersen F. ; Bligaard T Phys. Chem. Chem. Phys 2010, 12, 283.
doi: 10.1039/B917459A |
36 |
Vos J. G. ; Liu Z. C. ; Speck F. D. ; Perini N. ; Fu W. T. ; Cherevko S. ; Koper M. T. M ACS Catal. 2019, 9, 8561.
doi: 10.1021/acscatal.9b01159 |
37 |
Petrykin V. ; Macounova K. ; Shlyakhtin O. A. ; Krtil P Angew. Chem. Int. Ed. 2010, 49, 4813.
doi: 10.1002/ange.200907128 |
38 | Song L. J. ; Meng H. M Acta Phys. -Chim. Sin. 2010, 26 (9), 2375. |
宋利君; 孟惠民; 物理化学学报, 2010, 26 (9), 2375.
doi: 10.3866/PKU.WHXB20100847 |
|
39 |
Yu L. ; Wu L. B. ; McElhenny B. ; Song S. W. ; Luo D. ; Zhang F. H. ; Yu Y. ; Chen S. ; Ren Z. F Energy Environ. Sci. 2020, 13, 3439.
doi: 10.1039/D0EE00921K |
40 |
Huang W. H. ; Lin C. Y Faraday Discuss. 2019, 215, 205.
doi: 10.1039/C8FD00172C |
41 |
Zhao Y. Q. ; Jin B. ; Vasileff A. ; Jiao Y. ; Qiao S. Z J. Mater. Chem. A 2019, 7, 8117.
doi: 10.1039/C9TA01903K |
42 |
Dresp S. ; Thanh T. N. ; Klingenhof M. ; Brückner S. ; Hauke P. ; Strasser P Energy Environ. Sci. 2020, 13, 1725.
doi: 10.1039/D0EE01125H |
43 |
Cui B. H. ; Hu H. ; Liu C. ; Liu S. L. ; Chen F. S. ; Hu S. ; Zhang J. F. ; Zhou W. ; Deng Y. D. ; Qin Z. B. ; et al Nano Res. 2021, 14, 1149.
doi: 10.1007/s12274-020-3164-3 |
44 |
Hsu S. H. ; Miao J. W. ; Zhang L. P. ; Gao J. J. ; Wang H. M. ; Tao H. B. ; Hung S. F. ; Vasileff A. ; Qiao S. Z. ; Liu B Adv. Mater. 2018, 30, 1707261.
doi: 10.1002/adma.201707261 |
45 |
Gupta S. ; Forster M. ; Yadav A. ; Cowan A. J. ; Patel N. ; Patel M ACS Appl. Energy Mater. 2020, 3, 7619.
doi: 10.1021/acsaem.0c01040 |
46 |
Keane T. P. ; Nocera D. G ACS Omega 2019, 4, 12860.
doi: 10.1021/acsomega.9b01751 |
47 |
Bennett J. E Int. J. Hydrog. Energy 1980, 5, 401.
doi: 10.1016/0360-3199(80)90021-X |
48 |
Vos J. G. ; Wezendonk T. A. ; Jeremiasse A. W. ; Koper M. T. M J. Am. Chem. Soc. 2018, 140, 10270.
doi: 10.1021/jacs.8b05382 |
49 |
Okada T. ; Abe H. ; Murakami A. ; Shimizu T. ; Fujii K. ; Wakabayashi T. ; Nakayama M Langmuir 2020, 36, 5227.
doi: 10.1021/acs.langmuir.0c00547 |
50 |
Dresp S. ; Dionigi F. ; Klingenhof M. ; Strasser P ACS Energy Lett. 2019, 4, 933.
doi: 10.1021/acsenergylett.9b00220 |
51 |
Zhang B. ; Wang J. ; Wu B. ; Guo X. W. ; Wang Y. J. ; Chen D. ; Zhang Y. C. ; Du K. ; Oguzie E. E. ; Ma X. L Nat. Commun. 2018, 9, 2559.
doi: 10.1038/s41467-018-04942-x |
52 |
Liu X. P. ; Gong M. X. ; Xiao D. D. ; Deng S. F. ; Liang J. N. ; Zhao T. H. ; Lu Y. ; Shen T. ; Zhang J. ; Wang D. L Small 2020, 16, 2000663.
doi: 10.1002/smll.202000663 |
53 |
Kuang Y. ; Kenney M. J. ; Meng Y. T. ; Hung W. H. ; Liu Y. J. ; Huang J. E. ; Prasanna R. ; Li P. S. ; Li Y. P. ; Wang L. ; et al Proc. Natl. Acad. Sci. USA 2019, 116, 6624.
doi: 10.1073/pnas.1900556116 |
54 |
Wu H. ; Lu Q. ; Zhang J. F. ; Wang J. J. ; Han X. P. ; Zhao N. Q. ; Hu W. B. ; Li J. J. ; Chen Y. N. ; Deng Y. D Nano-Micro Lett. 2020, 12, 162.
doi: 10.1007/s40820-020-00505-2 |
55 |
Zhang J. ; Chen Z. L. ; Liu C. ; Zhao J. ; Liu S. L. ; Rao D. W. ; Nie A. M. ; Chen Y. N. ; Deng Y. D. ; Hu W. B Sci. China Mater. 2020, 63, 249.
doi: 10.1007/s40843-019-1176-6 |
56 |
Chen Y. N. ; Xu S. M. ; Zhu S. Z. ; Jacob R. J. ; Pastel G. ; Wang Y. B. ; Li Y. J. ; Dai J. Q. ; Chen F. J. ; Xie H. ; et al Nano Res. 2019, 12 (9), 2259.
doi: 10.1007/s12274-019-2304-0 |
57 |
Cui B. H. ; Zhang M. ; Zhao Y. X. ; Hu S Mater. Today Energy 2019, 13, 85.
doi: 10.1016/j.mtener.2019.05.001 |
58 | Finke C. E. ; Omelchenko S. T. ; Jasper J. T. ; Lichterman M. F. ; Read C. G. ; Lewis N. S. ; Hoffmann M. R Energy Environ. Sci. 2019, 12, 358. |
59 |
Sohrabnejad-Eskan I. ; Goryachev A. ; Exner K. S. ; Kibler L. A. ; Hensen E. J. M. ; Hofmann J. P. ; Over H ACS Catal. 2017, 7, 2403.
doi: 10.1021/acscatal.7b03142 |
60 |
Li H. Y. ; Tang Q. W. ; He B. L. ; Yang P. Z J. Mater. Chem. A 2016, 4, 6513.
doi: 10.1039/C6TA00785F |
61 |
Niu X. M. ; Tang Q. W. ; He B. L. ; Yang P. Z Electrochim. Acta 2016, 208, 180.
doi: 10.1016/j.electacta.2016.04.184 |
62 |
Song H. J. ; Yoon H. ; Ju B. ; Lee D. Y. ; Kim D. W ACS Catal. 2020, 10, 702.
doi: 10.1021/acscatal.9b04231 |
63 |
Wu X. H. ; Zhou S. ; Wang Z. Y. ; Liu J. S. ; Pei W. ; Yang P. J. ; Zhao J. J. ; Qiu J. S Adv. Energy Mater. 2019, 9, 1901333.
doi: 10.1002/aenm.201901333 |
64 |
Hou Z. Y. ; Gao L. L. ; Cui Z. D. ; Yin J. H IOP Conf. Series: Earth Environ. Sci. 2018, 108, 022037.
doi: 10.1088/1755-1315/108/2/022037 |
65 |
Gao J. J. ; Huang X. ; Cai W. Z. ; Wang Q. L. ; Jia C. M. ; Liu B ACS Appl. Mater. Interfaces 2020, 12, 25991.
doi: 10.1021/acsami.0c05906 |
66 |
Ooka H. ; Yamaguchi A. ; Takashima T. ; Hashimoto K. ; Nakamura R J. Phys. Chem. C 2017, 121, 17873.
doi: 10.1021/acs.jpcc.7b03749 |
67 |
Gao J. J. ; Xu C. Q. ; Hung S. F. ; Liu W. ; Cai W. Z. ; Zeng Z. P. ; Jia C. M. ; Chen H. M. ; Xiao H. ; Li J. ; et al J. Am. Chem. Soc. 2019, 141, 3014.
doi: 10.1021/jacs.8b11456 |
68 |
Menzel N. ; Ortel E. ; Mette K. ; Kraehnert R. ; Strasser S ACS Catal. 2013, 3, 1324.
doi: 10.1021/cs4000238 |
69 |
Yan G. B. ; Lian Y. B. ; Gu Y. D. ; Yang C. ; Sun H. ; Mu Q. Q. ; Li Q. ; Zhu W. ; Zheng X. S. ; Chen M. Z. ; et al ACS Catal. 2018, 8, 10137.
doi: 10.1021/acscatal.8b02203 |
70 |
Endrödi B. ; Stojanovic A. ; Cuartero M. ; Simic N. ; Wildlock M. ; Marco R. D. ; Crespo G. A. ; Cornell A ACS Sustain. Chem. Eng. 2019, 7, 12170.
doi: 10.1021/acssuschemeng.9b01279 |
71 |
Gao S. ; Li G. D. ; Liu Y. P. ; Chen H. ; Feng L. L. ; Wang Y. ; Yang M. ; Wang D. J. ; Wang S. ; Zou X. X Nanoscale 2015, 7, 2306.
doi: 10.1039/C4NR04924A |
72 |
Miao J. ; Lang Z. L. ; Zhang X. Y. ; Kong W. G. ; Peng O. W. ; Yang Y. ; Wang S. P. ; Cheng J. J. ; He T. C. ; Amini A. ; et al Adv. Funct. Mater. 2019, 29, 1805893.
doi: 10.1002/adfm.201805893 |
73 |
Liu J. W. ; Ma Q. L. ; Huang Z. Q. ; Liu G. G. ; Zhang H Adv. Mater. 2019, 31, 1800696.
doi: 10.1002/adma.201800696 |
74 |
Ma Y. Y. ; Wu C. J. ; Feng X. J. ; Tan H. Q. ; Yan L. K. ; Liu Y. ; Kang Z. H. ; Wang E. B. ; Li Y. G. Energy Environ. Sci. 2017, 10, 788.
doi: 10.1039/C6EE03768B |
75 |
Chauhana D. S. ; Quraishia M.A. ; Ansaria K.R. Prog. Organ. Coat. 2020, 147, 105741.
doi: 10.1016/j.porgcoat.2020.105741 |
76 |
Hussain S. ; Akbar K. ; Vikraman D. ; Song R. A. A. W. ; An K. S. ; Farooq A. ; Park J. Y. ; Chun S. H. ; Jung J Nanomaterials 2018, 8, 929.
doi: 10.3390/nano8110929 |
77 |
Hussain S. ; Vikraman D. ; Truong L. ; Akbar K. ; Rabani I. ; Kim H. S. ; Chun S. H. ; Jung J J. Alloy. Compd. 2019, 788, 267.
doi: 10.1016/j.jallcom.2019.02.192 |
78 |
Sarawutanukul S. ; Phattharasupakun N. ; Sawangphruk M Carbon 2019, 151, 109.
doi: 10.1016/j.carbon.2019.05.058 |
79 |
Lv Q. L. ; Han J. X. ; Tan X. L. ; Wang W. ; Cao L. X. ; Dong B. H ACS Appl. Energy Mater. 2019, 2, 3910.
doi: 10.1021/acsaem.9b00599 |
80 |
Shang X. ; Dong B. ; Chai Y. M. ; Liu C. G Sci. Bull. 2018, 63, 853.
doi: 10.1016/j.scib.2018.05.014 |
81 |
Kou Z. K. ; Yu Y. ; Liu X. M. ; Gao X. R. ; Zheng L. R. ; Zou H. Y. ; Pang Y. J. ; Wang Z. Y. ; Pan Z. H. ; He J. Q. ; et al ACS Catal. 2020, 10, 4411.
doi: 10.1021/acscatal.0c00340 |
82 |
Wu T. Z. ; Sun S. N. ; Song J. J. ; Xi S. B. ; Du Y. H. ; Chen B. ; Sasangka W. A. ; Liao H. B. ; Gan C. L. ; Scherer G. G. ; et al Nat. Catal. 2019, 2, 763.
doi: 10.1038/s41929-019-0325-4 |
83 |
Jin H. Y. ; Liu X. ; Vasileff A. ; Jiao Y. ; Zhao Y. Q. ; Zheng Y. ; Qiao S. Z ACS Nano 2018, 12, 12761.
doi: 10.1021/acsnano.8b07841 |
84 | Qin R. ; Wang P. Y. ; Lin C. ; Cao F. ; Zhang J. Y. ; Chen L. ; Mu S. C Acta Phys. -Chim. Sin. 2021, 37 (7), 2009099. |
秦睿; 王鹏彦; 林灿; 曹菲; 张金咏; 陈磊; 木士春; 物理化学学报, 2021, 37 (7), 2009099.
doi: 10.3866/PKU.WHXB202009099 |
|
85 |
Huang Y. C. ; Hu L. ; Liu R. ; Hu Y. W. ; Xiong T. Z. ; Qiu W. T. ; Balogun M. S. ; Pan A. L. ; Tong Y. X Appl. Catal. B: Environ. 2019, 251, 181.
doi: 10.1016/j.apcatb.2019.03.037 |
86 |
Liu Y. C. ; Hu X. ; Huang B. B. ; Xie Z. L ACS Sustain. Chem. Eng. 2019, 7, 18835.
doi: 10.1021/acssuschemeng.9b03720 |
87 |
Li P. S. ; Wang S. Y. ; Samo I. A. ; Zhang X. H. ; Wang Z. L. ; Wang C. ; Li Y. ; Du Y. Y. ; Zhong Y. ; Cheng C. T. ; et al Research 2020, 9, 2872141.
doi: 10.34133/2020/2872141 |
[1] | 吴倩, 高庆平, 单彬, 王文政, 齐玉萍, 台夕市, 王霞, 郑冬冬, 严虹, 应斌武, 罗永嵩, 孙圣钧, 刘倩, Hamdy Mohamed S., 孙旭平. 自支撑过渡金属海水电解析氧催化剂研究进展[J]. 物理化学学报, 2023, 39(12): 2303012 - . |
[2] | 陆尔东,季明荣,麻茂生,刘先明,徐彭寿. 非晶Fe40Ni40P14B6合金阳极钝化膜的电子能谱研究[J]. 物理化学学报, 1995, 11(06): 521 -525 . |
|